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Introduction

in this paper, we discuss several numerical methods fov
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solving nonlinear eigenvalue problems in R~ of the genera
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During the past decade or so a considerable theory of such

variationally-based eigenvslue problems has been developed by

many authors, mostly in an infinite dimensional setting.

example, important results, together with extensive biblioc

can be found in Berger and Berger [1968], Krasnosel'skii [1964]

Pimbley [1969], Vainberg [1964], and Vainberg and Aizengendler

(o)

(19681, However, in general, the theoretical results do not
? 2

provide for efficient methods of finding specific numerical sc
tions of problems of the type (Il).

tpplied problems leading to infinite dimensional eilgen

problems (I1) are usually formulated in terme of certain ¢

tial eguations, as for exampie, the eguations describing non

1

brations., For the numerical solution of such problems, the
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differential equation is frequently re
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and hence we are led in a2 natural way to finite

velue problems of the form (I1). If the functionals f,g:D ©R™
&

are continuously differentiable on some open convex set

theorem of Ljusternik [1934] ensures that 2 seclution of



obtained by considering instead the constrained minimization problem
min {f(x)|x € D, g(x) = O}.

This is a special case of the nonlinear programming problem

4
N
poe

min {f(x)fx e G}
with € defined by
(13) c=1xc¢ Dlgj(x) <0, 3=1,...,m}.

By far the largest class of methods for solving problems of the form

{12/3) consists of descent type algorithms

xk+l = xk - wkask, f(xk) p f(xk+l), xk+l e C, k=20,1,...,

k. . . .
where at each step k, s is a suitable direction vector, T, 2

steplength along this direction, and W a relaxation parameter.

k

The literature on descent methods for constrained as well as
unconstrained minimization problems is vast (see, for example,
Knzi and Oettli [1969] for constrained problems, and Ortega and
Rheinboldt [1970] for unconstrained ones). Of particular interest
to us here is a comprehensive convergence theory for such methods
in the unconstrained cése developed by Elkin [1968].

A central point of this theory is a complete separation of

the analysis of the steplength and direction algorithms which

allows the combination of many different algorithms into convergence



. . . SRS o S
theorems for various descent methods. In brief, if £:D ©R™ 7 R
is continuously differentiable on some cpen set D and minimization
\ 0 A
takes place on a closed component L~ of a level set on which £
0 k

. . k . . .
is bounded below; then, at the iterate x € L, a direction = 18

feasible if
(143 f“(xk)sk >0, ﬂsku = 1,

Now only the steplength algorithm is used to show that, for any such
, . . . k+1 . . .0 s e
feasible direction, the next iterate =x remaine in L and that

a basic ineguality of the form

k+1
X

(15) £ - £EETH 2 UET DD 2 0

holds where H is some function with the property that U(tk} -0
implies that tk 7 0. Under the assumptions on £ this already shows

that
{(16) lim f’(xk)sk = 0,

koo
Only at this point do the specidfic choileces of the directions enter
the analysis. Without further consideration of the steplength
algorithm, that is, entirely on the basis of (I5/6) and the properties
of £, it is shown that for certain classes of direction algorithms,
{16) implies the statement

(17) lim £' (x5 = 0.

koo




Finally, it follows essentially only from properties of f that
indeed {xk} itself converges to a critical point of f£f.

We shall extend this convergence theory of Elkin to the case
of the constrained minimization problem (I2/3) under rather mild
conditions on the constraint functionals gj. Instead of the
closedness of LO, now only its intersection LO n C with the
constraint set C 1is assumed to have that property. Correspondingly,
the large class of possible directions allowed by (I4) must be
suitably restricted to guarantee that the next iterate remains in
LG f C. TFor such a restricted class of feasible directions, the
constrained analogs of most standard steplength algorithms can be
analyzed in much the same way as in the unconstrained case. This
includes the usual minimization step, the Curry [1944] and Altman
(19661 algorithms and also algorithms due to Ostrowski [1966],
Goldstein [1964/1965/1966] and Armijo [1966]. In each case, the
steplength algorithm is shown to guarantee the existence of the
naxt iterate xk+l in LO i C and, in analogy to (I5), the validity

of a more involved estimate of the form

1

£ - £ 3 o8 (85,0 e ) 3 0.

k> %k

Here measures essentially the angle made by the feasible

Ty

k
direction s  with the normals to the boundary of the constraint

k . . k
set at x , and is related to the distance of x from the

&k

boundary. As before, ¢ has the property that from the existence



of 2 lower bound for f it follows that at least one of the three
limit statements
. oo ke k . . -

(18) lim £'(x)s = 0, lim o) = 0, lim g = 0

koo Teroo koo
is valid. Again, only at this point does the specific algorithm
for choocsing the feasible direction sk enter the analysis. The
central point is now to show that for them, the three quantities

f"(xk)sk, O and € are related in such a way that from (I8)

k.

follows directly the analog of (I7), namely,

" 4 kT k! kT_.
lim [£9(x )" - Z kngj(x )’1 =20

ko jed
with some sequence of numbers {v?} and index sets {Jk},
35 <{1,...,m}. This, together with suitable assumptions on £,

then ensures the convergence of the iterates {xk} to a conditional
critical point of f on C.
The most important class of direction algorithms considered
. , k . .
here concerns directions s obtained by normalizing vectors of the
form
kk , - kT
P P+ ) Bgllx)
jey 37

k, . . . . . =
where Pq(x )} is a certain projection matrix, and a,Bja
jeJe{l,...,m} are suitable coefficients. Specifically, three

. k . . .

choices of »p are examined and, in particular, for the case

k
p = f“(xk)T, the gradient projection method of Rosen [1960] for



linear constraints is also obtained. Other choices of pk are
the projected gradient direction transformed by a positive
definite matrix, and the coordinate direction forming the smallest
angle with the projected gradient direction. The latter is simply
the Gauss-Southwell algorithm for the constrained case.

Ag in the unconstrained case, the separate analysis of
steplength and direction cheoice provides for the combination of
many different algorithms into specific descent methods and gives
convergence results for all these combinations. In particular,
our general theory also provides as corollaries convergence
theorems for a method of feasible directions of Zoutendijk and for
Rosen's gradient projection method in the case of linear constraints,

Tn turning again to the eigenvalue problem (I1) we will
apply some of these minimization results to obtain numerical
solutions for it. Since the natural constraint set C associated
with {I1) has no interior, some modifications are needed and we
shall give two ways of changing the set € so that our earlier
established convergence theory applies to (I1). The first method
changes the constraint set into a set resembling an annulus while
in the other one, a penalty function is added to £ to eliminate
one of the two constraints g(x) € 0 or -g(x) € 0. In contrast to
these approaches we alsoc present an algorithm of Goldstein [1967]
for the case g"(x)T = Ax where A € L(Rn) is symmetric and positive

definite. This method has the basic form

B



Kt xk - TkAflf“(xk)T
(19) L = ,k=0,1,...,
N T |
® =T A

and we shall extend this result so that the parameter T, can be
chosen constant throughout the process.

Since the rate of convergence for descent processes is, in
general, only linear, it is desirable to terminate the procedure
once the iterates are sufficiently close to the solution and to
apply then a locally convergent method such as the quadratically
convergent Newton process. This constitutes two parts of a complete
algorithm for finding entire branches of solutioms of (I1). For

the final part of this algorithm we follow the suggestion of

Pimbley [1969] and solve numerically the initial value problem

e O I O R e R R R

in order to compute such a branch of golutions of (I1).
The paper is organized in the following form: Chapter I
presents a survey of well-known existence results for the general

nonlinear eigenvalue problem

Fx = AGx, X €D c:Rn, P> Rl.

We also discuss some aspects of the existence and extendability of
continuous branches of elgenvectors and the concept of bifurcation

points. Moreover, because of 1ts importance in the later development,




a proof of the Ljusternik [1934] theorem is also given.

Chapter II contains the mentioned generalization of the Elkin
[1968] convergence theory to the nonlinear programming problem
{12/3) beginning in Section 2.1 with a brief review of the basic
concepts of Elkin's theory.

Chapter III applies the results of Chapter II to the eigen-
value problem (I1) and includes also the discussion of the mentioned
algorithm (I9) of Goldstein [1967]. Then, the indicated complete
algorithm for finding entire branches of solutions of (Il) is
applied to a problem related to nonlinear heat generation studied
by Joseph [1965] and to a rotating string problem of Kolodner [1955].

Numerical results are then given for these two examples.



CHAPTER T

Survey of Existence Results for Sclutioms of

Nonlinear Eigenvalue Problems in R-

1.1 Notation

We begin this discussion with a brief description of the

. oo . . .
notation to be used. R~ is the real n~dimensional linear space

T -
of column vectors x = (XT,e.a,xn) where T denotes transposition.

by

) . i, . . .

In particular, e, £ = 1,...,n, are the unit basis vectors in R
. cth

for which the i component equals one and all others are zero.

i) I . .

For x,y € R the Euclidean inner preduct of x and y is

, . T .

dencoted by x"y = Z EINAE In all cases some norm is assumed

i=1
to be given on R, Frequently we will use the Euclidean norm

el = ot

norms. The linear space of all real m x n matrices will be denoted

although most of the results generalize to other

by L(Rn,Rm) and by L(Rn) if m = n. The norm on L(Rp,Rm) will always
be that which is induced by the vector norm on R and R". For

A g L(RnﬂRm) we sometimes write A = (aij) where s i=1,...,m,

i =1,...,0n, are the elements of A. As usual, A ¢ L(Rn) is

symmetric if and only if (Ax)Ty = xTAy for all x,y € R"

and is positive definite if and only if XTAX > 0 for all x # 0.

For an arbitrary set D « R" we write the interior of D as int (D),
the closure of D as D and the boundary of D as D. An open
interval (x,v) €« R™ is defined as the set {z ¢ Rn[z =ty + (I-t)x

for some t £ (0,1Y}. The corresponding closed and half-open intervals

will be denoted by [x,y] and (x,y] (or [x,y)), respectively.

9
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A mapping F with domain D &€ R" and range in R® will be
denoted by F:D & R" > R" and its components by fi, i=1,...,m.
Thus, in particular, Fx = (fl(x),...,fm(x))T. We use the standard
differentiability concepts: The mapping F:D e R + R™ is Gateaux
differentiable (G-differentiable) at x € int(D) if there is an

5

L{Rnng) such that for any h ¢ Rn,

A g
lim ﬂ%j{ﬁF(x+th) - Fx - tan| = 0,
>0
and ¥ 1is Frechet differentiable (F-differentiable or simply differ-

entiable) if

lim = f[FG+h) - Fx ~ Ah| = 0.

oo B
¥or both cases we denote the unique derivative A by F'(x). Speci-
fically, F'(x) is the Jacobian matrix (iji(x)) where iji(x)
= ?fi(x)/axj, i=1,...,m, j = 1,...,n. The following two well-known
forms of the mean-value theorem for functionals will be used frequent-
iy: If £:D € R" +’Rl has a G-derivative f£' and if for any
[x,yl & D, ¥:[0,1] *’L(Rn,Rl), Y(t) = £ (tx+(1-t)y) is continuous,

then

it

f(y) - £(x) = £'(2) (y-x), for some z € (x,¥),

as well as

1
£(y) - £(x) g £1 (x4t (y—x)) (y=x)dt.



P
Lk

Finally, we shall at times use various types of convexity for
. . n 1., .
functionals. A funecticnal £:DC R 5 R is convex 1mn SOome CONVEX

set DO @D if for all %,y € D0 and all t ¢ [0,1],
(et (l-t)y) ¢ tf(x) + (1-t)fly).

If D is open and f Thas a G-derivative f£' on D, then f{ 1is

pseudo-convex if for all x,y € D

f(x) < f(y) implies £'(y)(y-x) > M

£ is guesi-convex on DO if, for any x,vy € D

03
flex+(1~-t)y) < max {f(x),£{(y)}, ¥t e (0,1).

For a discussion of these various types of comnvexity, we refer to
Elkin [1968] and Ortega and Rheinboldt [1970]. Many of the related

results can also be found in Mangasarian [1969].

1.2 Survey of existence results in R”: The non~potential case

In this section we present a survey of existence results for

solutions of the eigenvalue problem

(1.2.13 Fx - »x = 0, x €D, A € Rl

where F,G:D = R" + R" are given mappings on a domain D. Most of

these results are known, often in a2 more general infinite dimensional
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form, but some minor extensions are also included. The mappings
F and G are not necessarily potential operators, that is, they
. , . n
are not necessarily the gradients of some functionals omn R™.
A vector x € D is said to be an eigenvector of (1.2.1) (or
o n - . . 1
simply of F when G = I) corresponding to the eigenvalue A ER
c e 1 . .
if x £ D and A € R~ constitute a solution of (1.2.1). If x # 0
and Gx # 0, then the eigenvector is said to be non-trivial. The
1
set of all X € R” for which (1.2.1) has some non-trivial eigenvector
x € D is called the spectrum of (1.2.1). Easy examples show that
the spectrum may be empty, discrete or continuous. For ease of
. . . . 1
notation we sometimes write (x,)A) for a solution x £ D, A € R of
{(1.2.1),

There are several basic questions which are of interest to us
here. When can the existence of eigenvalues be guaranteed? If an
eigenvalue exists, isg its corresponding eigenvector unique? If x
is an eigenvector, when is there a continuous curve of solutions of
{1.2.1) through == and if such a curve exists, when is it unique?
For a discussion of these questions the following terminology will
prove to be useful.
~ea ot n n ,

Definition 1.2.1 Let F,G:D ©« R~ -~ R be defined on the set D. If

. + R” and k:(tl,tz) < Rl +—Rl on

there exist mappings x:(tl,tz) < R

some open interval (tl,tz) with t, < t, such that (x(t),A(r))

1 2

solves (1.2.1), then x is called a branch of eigenvectors of (1.2.1)

in R, If x dis continuous on (tl,tz), then x 1is a continuous

branch of eigenvectors of (1.2.1) in‘mR?: A branch of eigenvectors




of (1.2.1) in R® is proper if the mapping x is one-one. A

point {xo,xﬁ} is a regular point of (1.2.1) if there is a unique
proper continuous branch of eigenvectors of (1.2.1) in R" through
XOg that is, for which {x(to),k(to)) = (XOSKO) for some

tG & {tlgt2)§ Any solution (XO,KO) of (1.2.1) which is not

a regular point of (1.2.1) is a branch point of (1.2.1).

Note that in the linear case F = A & L(RY) symmetric and
G Z I there is a proper continuous branch of eigenvectors of
(1.2.1) in R with Ay = %0 and hence A is not necessarily
one-one. However, if we assume that A is one-one, then we can
parameterise a continuous branch of eigenvectors of (1.2.1) in rR”

with A as the parameter.

Defindition 1.2.2 ZLet F,G:D = R" > R be defined on the open set

D and suppose that (xﬁako) solves (1.2.1). If xl,xzs(tl,tz) C‘Rl - R?

s . ; .. 0 ;
are two distinct branches of eigenvectors of (1.2.1) through x such

that lim (x
A
%

is called a bifurcation point of

{t}wxz(t)) = 0 then X

1 0

Frequently in the applications to discretized vibration problems

we have FO = G0 = 0. In such cases it usually happens that for small

ik[; (0,2} is the only solution of (1.2.1) and, beginning with some

ko # 0, eigenvectors with small norm appear. More precisely, to each

€ and ¢ there corresponds an eigenvector x of (1.2.1) with

associated eigenvalue A such that

0 < flxl <8, [ax,] < e



14

Note that this determines a mapping xlz(XO—E,XO+€) =-Rl > R"

such that (xl(k),k) solves (1.2.1) and xl(X} # 0 for X # AO'
Therefore the mappings xl,xz(t) = 0 are two distinct branches of
eigenvectors of (1.2.1) in rR™ through 0. Hence AO is a bi-
furcation point of (1.2.1) and (O,XO) is a branch point of (1.2.1).

We now turn to the existence theory for seclving (1.2.1). Some

of the proofs use the well-known degree theory for mappings in R".

i}

or a development of this theory and the proofs of results quoted
below, we refer, for example, to Ortega and Rheinboldt [1970}. If

- no, = n n . .

U = R is an open, bounded set and F:D <R~ - R is continuous, then
for any v ¢ F(b) the degree of F at y with respect to D is
denoted by deg (¥,D,y). The fundamental relation between the degree
of ¥ and the solvability of Fx = y in D is given by the following
famous result:

Theorem 1.2.3 (Kronecker Existence Theorem) Let F:D c R = R" be

continuous and D an open, bounded set. If y ¢ F(D) and
deg{F,D,y) # 0, then the equation Fx = y has a solution in D.

Note therefore that if y ¢ F(ﬁ), then deg(F,D,y) = 0. A very
important result in degree theory states that under certain condi-
tions the degree of a mapping remains constant under homotopic trans-
formation.

Theorem 1.2.4 (Homotepy Invariance Theorem) Let D be an open,

1

. " = + .
hounded set and H:D x [0,1] ¢ RT ~ » R" a given homotopy. Suppose,
further, that v ¢ R" satisfies H{x,t) # v for all {(x,t) ¢ D x [0,1].

Then deg{H(s,t),D,y) is constant for t ¢ [0,1].
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As a consequence of this, we may obtain the following result.

Theorem 1.2.5 (Poincaré-Bohl) Let F,G:D = R™ 5 R” be two continuous

maps and D an open, bounded set. If y ¢ R" is any point such thar
vy ¢ {uce Rniu = tFx + (1-t)6x, x ¢ D, t ¢ [0,11},

then deg(G,D,y) = deg(F,D,y).

Proof. Consider the homotopy

n:5 % [0,11¢ BYTC - ®%, Hix,t) = tFx + (1-t)Cx.

Evidently Hix,t) # vy for (x,t) € D x [0,1] and hence the result follows
directly from Theorem 1.2.4.
The following result will also be useful:

Theorem 1.2.6 Let F:D < R » R™ be continuously differentiable on the

open set D, and D an open, bounded set with 50 € D. Assume that

4]
v ¢ F(ﬁ) Uy F(E(50)> where E(50> = {x g ﬁO!Fi(x) is singular}. Then
either ' = {x ¢ BQ{FX = vy} is empty and deg(F,DO,y) =0, or T consists

&L

of finitely many points xlﬁoaa,x and
m .
(1.2.2) deg{F,DO,y) = Z sgn det F'(xd).

We now return to the eigenvalue problem. For the case G =z I
a general existence result for the problem (1.2.1) is given by
Riedrich [1968]. TFor its proof we require some theorems on the

extendability of continuous operators,



16

The following result is a simplified form of the well-known
Tietze extension theorem. (See, for example, Dieudonné [1960]).

- n m . —
Theorem 1.2.7 Let F:D < R -~ R be continuous on the closed set D.

Then there exists a continuous map G:R" + R™ defined on all of R"
such that G(x) = F(x) for x ¢ D.

With the help of this, we can prove the following form of a
homotopy extension thecrem of Granas [1961].

= . n
Theorem 1.2.8 (Homotopy Extension Thecrem) Let F,G:D0 <D cr™ + R

be continuous maps on the closed set 50& Suppose that there exists a

homotopy H:ﬁo x 10,11 CfRn+l + " for which H{(x,0) = Fx, H{x,1) = Gx

for x € ﬁO and H(x,t) # 0 for all (x,t) ¢ 50 x [0,1]. Moreover,

A -
assume that F has a continuous extension F to all of D such

#

i — A
that Fx # 0 for x € D. Then G has a continuous extension G to

&

all of D which is homotopic to F under a homotopy H for which

43)

(x,t) 4 0 for all (x,t) €D x [0,1].

Proof. By hypothesis Fx = H(x,0) # 0 and Gx = H(x,1) # 0 for all

% € ﬁgw Consider the mapping H*:ﬁo x {0,11Y D x {0} = Rn+l - r®

N -
defined by H*¥(x,0) = Fx for x € D and H*(x,t) H{x,t) for

Y

{(x.,t) & 50 x [0,1]. Then H* dis continuous on the closed set

ﬁﬁ x [0,11 U D x {0} and it follows from Theorem 1.2.7 that H%

W

L

A .
has & continuous extension H* to all of D X [0,1]. By the continuity

N
of  H®  the set

D1 = {x ¢ ﬁiﬁ*(x,t) = 0 for some t £ [0,1]}
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is closed and, since ﬁ*(x,t) = H*(x,t) = H{x,t) # 0 for (x,t) € 50 < {0,111,
we see that Dl 01 D0 = {p}.

Now consider the continuous functional U:D R® + [0,17,

it

inf [x-y I/ (inf Jx-y | + inf [x-y ).
yeby yeby yED,

Yix)

Evidently y(x) 0 for x ¢ Dl and Y{x) = 1 for x € D.. With its help

0

. : . AN ntl n ~ A R
we define the mapping H:D x [0,1] &R + R" by H(x,t) = H*{x, ¥(x)t)
~ A A - N
and set Gx = H{x,1). By its comstruction H is continuous on D % [0,1]
and hence is a homotopy on D. Moreover,

A A ~ -
Hi{x,0) = 8%{x,0) = H%(x,0) = Fx for x € D,

~ A - A
and hence F is homotopic to G on D. Finally, if H(x,t) = 0 for

some (Xopto} €D % [0,1], then also H*(XO,W(XO)tO) = 0. Therefore,
< must lie in the set D, which implies that W(xo) = 0 and hence
i AN VN 0 L0 5 o 2 , =
that 0 = H*(x ,0) = H*¥(x ,0) = Fx contradicting Fx # 0 for x € D.
This completes the proof.
In order to apply this theorem we meed to know when P exists.
Such a result can be obtained with the help of the following concept

introduced by Riedrich [19687.

Definition 1.2.9 A mapping F:D < R" > R” omits a direction on D

NP . 8! .
if there exists a non~zero y € R such that F(D) does not intersect

the ray

R{y) = {z ¢ Rz = ty, t = 0}.
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Note that, since 0 ¢ R(y), an operator which omits a direction
on D must be non-zero on D.

Riedrich [1968] showed that if a continuous mapping F:D < R" -+ r

omits a direction on the boundary of a compact neighborhood U of
A —

the origin then F has a continuous extension F to all of U and

Fx # 0 for all x ¢ U. Using the above homotopy extension theorem

we obtain the following result.

Lemma 1.2.10 Let F:ﬁo ¢ D c r" +-R? be continuous. If F omits a

- Al
direction on DO’ then F has a continuous extension F to all of

0 such that Fx # O for all x ¢ D.
Proof. Since F omits a direction on 50, there exists a non-

zero y € R" such that Fx # ty for all t > 0 and all x ¢ 50' Consider

the homotopy

H:Dy x [0,1] € R L R H(x,t) = (1-t)Fx - ty.

Evidently, the mappings F and G:D. <D = r" +~Rn, Gx = -y are homo-

0
topic on 50 and H(x,t) # 0 for all (x,t) ¢ 50 x [0,1]. Moreover,

fa) — A
& has a continuous extension G to all of D defined by Gx = -y for

»
O]
i

Since Gx # O for x ¢ D, Theorem 1.2.8 now implies that F
A p— FAl

has a continuous extension F to all of D such that Fx # 0 for

21l x € D.

As a direct comsequence of this lemma we can now prove Riedrich's

ey
fod
()
(o)t

8] existence result for the eigenvalue problem (1.2.1).



Theorem 1.2.11 Let D be an open, bounded set containing the origin.

8

. . S n n . .
If the continuous mapping F:D € R - R omits a direction on D, then

L.
there exists a real number A > 0 and an x* € D such that
Fxk = Jx#%,

Proof. Since D © D, Lemma 1.2.10 implies that F has a con-—
o - A P,
rinuous extension F to all of D such that Fx # 0 for all x ¢ D.
A
Therefore it follows from Theorem 1.2.3 that deg(F,D,0) = 0.

& [}
Now suppose that Fx = Fx # Ax for all x ¢ D and X > 0. Then

we gee that the homotopy connecting ﬁ and -1,
. h.i._‘i
B:D x [0,1] e RV - Rps H{x,t) = tFx - (1-t)x,

satisfies H(x,t) # 0 for all (x,t) ¢ D x [0,1]. Hence it follows

from Theorems 1.2.4 and 1.2.6 that
A
0 = deg(F,p,0) = deg(-I1,D,0) = (-1)".

This contradiction vields the result.

Corellary 1.2.12 let A ¢ L(R™ be nonsingular.  Then under the hypo-

thesis of Theorem 1.2.11 there exists a real number ) > 0 and an

&
x* ¢ D such that
Fx® = )Ax#*,

Proof. Since A ¢ L{Rn) is nonsingular, Afl exists and A-1§

[

is countinuous on D. Thus we need only show that A—lF omits a
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direction on D. By hypothesis there exists a v # 0 such that for
no X ¢ D the relation Fx = ty holds for some t» 0. Clearly then
Awly omits the direction Ay on b, and the result is a direct
consequence of Theorem 1.2.11.

The following two examples indicate the necessity of all of the
hypotheses of Theorem 1.2.11.

Frample 1.2.13 Let F:5(0,1) < R™ + R” be defined by

T 1 T
(190,”.,0) s if x ='7£1— (l,...,l)

2 2. T .
(Xl”""xn) , otherwise.

Clearly F 4is not continuous on S{0,1) since

1
v

T

F( ’“"T’i“> = (1,0,...,0)0 and Fx> —%1-—(1,...,1)

1 T
for X+71’T(l>".’l> s ”X “ = 1.

However, it is readily verified that F omits the direction

T ¢ s
~{1,...,1)" on $(0,1). Now suppose that Fx = )x for some x ¢ S(0,1)

and 3 > 0. It then follows that (xi,...sxi)T = K(xl,...,xn)T and

hence that A = Xy = .. =R S i;%— . Since Fx # Ax for

s 1;/7%:—-(1,,,.,1)i, we have x # 7%—-(1,...,1)T and thus

¥ o= - v;-(l,°¢.,l)T and A = - Lo« 0. Thus there is no A > 0
Vi /n

and x ¢ é(O,l) such that Fx = Ax. This shows that in Theorem 1.2.11

the continuity condition for ¥ on D cannot, in general, be removed.



2n >

Example 1.2.14 Let F:é(O,l) <R RZn be defined by

T
F(xl,.,.ﬁxzn) = (XZ’_X19X4’_X3’°'°’X2n’—x2n-l) .

Clearly F is continuous on S(0,1). Moreover if y # 0 is any vector

2n

in R, then with t = “yu’-l > 0 and x = nyn—l("YZsylsH'a”YZEXs»yznwi“\fT

it is easily seen that x € S(0,1) and Fx = ty. Hence F omits no
direction on §(0,l)o Now suppose that there is an x € é(O,l) and
a A > 0 such that Fx = Ax. Then
T T
(ngwxlsﬂangzn,—xzn_l) = K(xl,.o.,xzn)

and hence

K, . = =AX 5 X2j = %xzj_l, 3 =1,...,0,

or

‘ 2
{(1.2.3 %, = -2"%,, 3 1,...,2n.
8 ) J j 3 2

Since x € é(@,l), there is at least onme index i, 1 € 1 € 2n such
that Xy # 0. But then (1.2.3) implies that Xz = -1 which contradicts
A0,

Note that in this example the dimension of the space was even.
The next result shows that for odd-dimensional spaces the requirement
in Theorem 1.2.11 that ¥ omit a direction on ﬁ can be dropped. The

) @ a -~
following result is due to Poincaré and Brouwer (for references see,

for ezample, Krasnosel'skii [1964; p. 931).
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2n-1 N R2n~l, n 1,

Theorem 1,2.15 (Hedgehog Theorem) Let F:D ©R

be continuous and D an open, bounded set containing the origin.
L]

Then there is a real number A and an x* € D such that Fx¥* = )x%.

~
Prevof, By Theorem 1.2.7 F has a continuous extension F
to all of D. Assume that Fx = Fx # Ax for all x € D and A € Rl.

2n 2n-1

Consider the two homotopies, Hizﬁ x {0,111 ¢ R , i=1,2,

A

H, {x,t) = tFx + (1-t)x, Hz(x,t)

tFx - (1~-t)x. Then Hi(x,t) # 0

for all (x,t) € D x [0,1], 1 = 1,2, and Theorem 1.2.4 implies that

B oy ~ Zn-1
1 = deg(I,D,0) = deg(F,D,0) = deg(~-I,D,0) = (-1) = -1.

impossible, the proof is complete.

Corollary 1.2.16 Let A € L(Rzn“l) be nonsingular. Then under the

hypotheses of Theorem 1.2.15 there is a real number XA and an
%% © D such that Fx¥* = AAx#*,

. o 2n~-1, . -1 .

Procf. Since A € L(R ) is nonsingular, A exists and
A"F is continuous. Hence the result follows trivially from

.

Theovem 1.2.15.
The next result provides us with a general existence result for
the problem (1.2.1)., It can be found in Krasnosel'skii [1964] and

cont

:ins Theorem 1.2.15 as a special case. Unfortunately its

j35]

practical usefulness appears to be limited due to the difficulty

in calculating the degree of a mapping.



Theorem 1.2.17 Let F,G:D « R™ , R" be continuous on the compact set

50 © D where D, is open and suppose that Fx # 0, Gx # 0, for all

deg(F,DO,O) # deg("G,DO,O)s

then there exists a point x* € DO such that Fx* = AGx* with A > 0.

Procf. By Theorem 1.2.5 we have

0e {ue Ry = tFx - (1-2)6x, % 65 t e [0,11}.

oﬂ
Thus there exists a point x* € DO and a number t € [0,1] such that

TFx% ~ (1-T)Gx* = 0.

Clearly te (0,1), for otherwise Fx* = 0 or Gx* = 0 contradicting the
~
hypothesis. Therefore Fx% = AGx#* with A = ﬁ%g > 0.

As a consequence of this result, several corollaries can be
phrased which provide information about the eigenvalues of F.

. ] igs) n . ,
Corollary 1.2.18 Let F:D © R — R be continuous on the compact set

6@ ¢ D, where D is open and contains the origin. If for some fixed

0

U, Fx # ux for all x € 50 and deg{uI-F,DO,O) # 1, then F has an

eigenvalue A > | with a corresponding nontrivial eigenvector on ﬁos

Proof. Taking G Z ~I in Theorem 1.2.17, we have deg(—G9D0§O} =1,

Hence it follows that there is an XO £ ﬁ and XO > 0 such that

0
0 o .0 s 0
Y o~ Fx o= A - Moreover, 0 ¢ D0 implies that x # 0 and hence

b}
FxO = Ax°, ) = Ao U
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For the special case 4 = 0 we have Fx # 0 for all x ¢ D0 and

deg(FBDO,O) # (—-l)n implies that F has a positive eigenvalue. Note

EN

that in Theorem 1.2.11, the extension F of F to all of 50
satisfies 0 = deg(%,DO,O) # (—l)n and hence Corollary 1.2.18 could be

used to prove that theorem.

Corollary 1.2.19 Let F:D ¢ R™ + R" be continuous on the compact set

Dy e D with DO open and 0 ¢ 50. If for some fixed M, Fx # Ux for

2

all x € DO and deg(UI—F,DO,O) # 0, then F has eigenvalues Xl,kz

with R7 <y < Xl for which the corresponding nontrivial eigenvectors

F4

are on ﬁOa
Proof. Since 0 ¢ 60’ deg(I,DO,O) = 0 and hence by Theorem 1.2.17,
1 1 8 1 1

1 -1 .
Ux™ - Fx© = —Xox , X E D0 with XO > 0. Thus Fx™ = Xlx R Xl = XO + U > .
2

Recause deg(~I,DO,O) = 0 also holds, we obtain uxz - sz = XSX .

2. 2 2% 22 3% o
x" € Dy with ké > 0., Hence Fx" = Azx R Az = U - Xé < Y. GClearly

0 ¢ D, implies that x' # 0 and x° # 0.

We now turn to the question of the existence of proper continuous
branches of eigenvectors of (1.2.1) in R" through a point x € R,
The discussion will also answer in part some of the uniqueness ques-
tions. For results in this area we shall assume the differentiability
of ¥ and G although weaker conditions would also be possible. Our

discussion follows that given by Krasnosel'skii [1964]. We first

prove a perturbation result implicitly contained in Krasnosel'skii

{19647,
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Theorem 1.2,20 Let F,G:D € R" > R be continuously differentiable

on the open set D, and suppose that for some fixed y ¢ R™ there
exists a solution xo € D of Fx = y at which F'(xo) is nonsingular.
Then there exists a ball §(x0,5), § > 0 and a number 80 > 0 such

that for any € with |€| € 80 the equation
(1.2.4) Fx + eGx = vy

has a unique solution x(€) in §(x0,5) and x(£) depends continuously
on € with x(0) = xo.

Proof. By assumption there exists an o > 0 such that
”F'(xo)h“ p aﬂh“ for éll h e R%. Using the openness of D, the
continuous differentiability of F and the implicit function theorem,

we can choose 6§ > 0 such that

(i) §(x0,6) <D, (ii) xo is the unique solution of Fx = y in

2
2

B > 0 be such that ﬂFx‘Y” 2 B for all x ¢ éCxO,S) and set

§(x0,6) and (iii) ”F'(x)—F‘(xo)" < for x € §(x0,6). Now let

Y= su ﬁGx", n= _su et x|
xeS(xVY,6) xe€S(xY,98)

and EO = %—min {B/Y, a/2n}. Consider the Homotopy
=00 8§y x ntl , .n _
H:S(x",0) [0,1] € R R, H(x,t) = t(Fx+eGx)+(1-t)Fx

with ]EI € SO' Then for (x,t) € é(x0,5) x [0,1] we have
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[aGe, -yl > llmeylclelloxl] » 8 - 5 v > o.

Therefore, by Theorems 1.2.4 and 1.2.6
py 0 _ 0
(1.2.5) 1 = deg(F,S(x",0),y) = deg(F+¢G,S(x ,6),y).

Hence Theorem 1.2.3 implies that (1.2.4) has at least one solution

in §fx096). Moreover, for any x € §(x0,6) and h # 0

| ey+eet Gnl > [P GOn)-] @' @O -F @)nf-lelte Gonl|
> (- 5 - Gomllnl > o

which shows that F'(x) + €G'(x) is nonsingular. But then by the
implicit function theorem every solution of (1.2.4) in §(x0,5) is diso-
lated. Hence the compactness of §(x0,5) implies that there are only
e . 1 m . =,0

finitely many solutions x ,...,x of (1.2.4) in S(x7,0).

Now consider the homotopies

1 n

H,:5(0,6) x [0,1] € RS R® =1, m,

o (h,) = (1-0)F" (xDh + t(F' (3 )+e6" (x3))h.
Then for (h,t) € é(o,é) x [0,1]
B, (B,e) ] > 1E GOn)-t] &' G)-F &Onnf-tle| o' en)|

> (= G=Gom|n] > 0
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which, applying Theorems 1.2.4 and 1.2.6, shows that for j = 1,...,m,

deg (F' (x3)+e6" (x1),5(0,8) ,0) = deg(F' (x°),5(0,8),0) =

where ¢ = tl. Again using Theorem 1.2.6 and (1.2.5) we obtain
0 _ T A NP
+1 = deg(F+eG,S(x ,8),y) = z sgn det (F'(x”)+eG'(x"))
371

m . .
7 deg(F' (x?)+e6" (x7),5(0,6),0) = mg
j=1

which implies that m = 1. Finally, the continuity of F and G
guarantees that the unique solution x(g) of (1.2.4) in §(x0,6), ]gs < €
depends continuously on € and that lim x(g) = x(0) = xO.

e*+0

On the basis of this theorem we can prove the following result

of Krasnosel'skii [1964].

Theorem 1.2.21 Given F,G:D < R™ + R™ defined on the open set D,
let xo £ D be a nontrivial eigenvector of (1.2.1) with corresponding
eigenvalue AO' Further suppose that ¥ and G are continuously
differentiable in some open neighborhood U< D of xo. If

F'(xo) - XOG'(XO) is nonsingular, then the spectrum of (1.2.1)
contains some interval [Xo—e,xo+€] with € > 0. Moreover,

there exists a ball §(x0,5) © U such that for each A € (XO—E;K +€)
there is a unique nontrivial eigenvector x(1) in §(x0,5) of (1.2.1)
and the mapping x = x(x),XE(AO—E,K +€) is a proper continuous branch

of eigenvectors of (1.2.1) in rR® through xo.
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Proof. Consider the mapping H =TF - AOC and its perturbation
H + (kaK)GD Clearly H is continuously differentiable on U and
hence by our hypothesis H'(XO) = F'(xo) - KOG'(XO) is nonsingular.
Therefore Theorem 1.2.20 applies to the perturbed equation
He 4+ {%Owk)GX = 0. Consequently a ball §(x0,5)C U, § > 0, and an

€. > 0 can be found such that for all A with !X—XO‘ € €. the equation

1 1

Fx — AGx = Hx + (XG—X)GX =0

has a unique solution x(A) in §(X096)~ Thus we have Fx - AOGX # 0

for all x # xo3 X € §(x0,5) and hence
0# Fx(A) - A Gx() = (-2 )6x(A) for A # Ay, |x_xO[ < e

which implies that Gx(A) # 0. Moreover by Theorem 1.2.20 x()) depends

. . 0
continuously on A. Therefore since x # 0, we can choose € < 81

[¢3)

uch that x(A) # 0 for [K—Xol < € and hence x(}) is a nontrivial

genvector of (1.2.1) for iX—XO‘ < g,

Now suppose x(%l) = x(%z) for some Xl,kz > (AO—E,XO+€), then

0 Fx(kl) - AlGx(Al) = FX(XZ) - AlGX(AZ)

it

i

FX(AZ) - Asz(kz)g

0= (Xl—Xz)GX(AZ)-
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Thus Gx(kz) # 0 1implies A, = Xz and thus the mapping x = x()\) is

1
also one-one on (AO—E,AO+8). Hence x is a proper branch of eigen-
vectors of (1.2.1) in R" through xo.

One can now easily see that the point (xO,AO) of Theorem 1.2.21
is a regular point of (1.2.1). Indeed under the assumptions of
Theorem 1.2.21 with continuously differentiable F:R™ > R" and G = I,
Pimbley [1969] has shown that a proper continuous branch of eigen-
vectors x()) of (1.2.1) can be extended maximally. He showed that
the extension process could be carried out at least until a value
of ) is reached for which AI - F'(x()\)) does not have an
inverse. Using the same reasoning for the setting described by
Theorem 1.2.21, it is possible to show that x()) can be extended at
least until a value of ) is reached for which either x()\) leaves
U or F'x(\)) - A6'(x())) is singular.

Note that Theorem 1.2.21 and the subsequent discussion directly
apply to the problem that is of most interest to us here, namely,
when Gx = Ax for x ¢ R and A ¢ L(Rn) is symmetric and positive
definite. We also note that the conditions of Theorem 1.2.21 are
not necessary for the existence of a continuous branch. However,
in the applications to be discussed in the second half of Chapter IIT,
we shall assume the conditions of Theorem 1.2.21 since other possi-
bilities of guaranteeing the continuation of solutions appear to lead

to numerical difficulties due to unbounded terms in a related
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differential equation and the nonuniqueness éf solutions. For some
results in this direction, we refer to Pimbley [1969] and Berger
and Berger [1968].

For the remainder of the section we consider only the following

special case of (1.2.1):

(1.2.6) Fx — MAx = 0, x € D, A € RY,

where A ¢ L(R") is nonsingular. The next series of results show that
even if F'(xo) - KOA is singular there may still exist a branch

0
of eigenvectors of (1.2.6> in Rn through X .

Theorem 1.2.22 Let F:D € R - R™ be defined on the open set D

containing the origin. Suppose that FO = 0, F is differentiable

at 0O and A ¢ L(Rn) is nonsingular. Then all of the bifurcation

Letcoy.

points of (1.2.6) are eigenvalues of A

Procf. Suppose that X, 1is not an eigenvalue of A~1

T
0 F'(0). Then

W

T

can choose ¢ > 0 such that
-1, n
[AF 0 -2Dx| > ollx], Vx er,
and ¢ > 0 such that
-1 -1 o
[a el (0| < 2 e, fox [x ] < o

Let ¢ = min {5,-% }, then for |A—A0] < €, ﬂx” < g,



|a trxxl) > || @ @A Dx| - a7 0)-A Ex |

= =gl

z%ﬂx'i

°

Consequently, there is no nonzero solution of Fx = JAx with

|A-A,] € € and “x“ £ 6. In other words, Ay 1is mot a bifurcation

ol
point of (1.2.6).
Although all bifurcation points of (1.2.6) are eigen-

lF'(O), the converse is not true as an example

values of A
of Krasnosel'skii [1964] shows. However, a simple modification of a
proof given by Krasnosel'skii [1964] yields the following result

which we state without proof.

Theorem 1.2.23 Let F:D € R" - R" be defined on the open set D

containing the origin. Suppose that FO = 0, F is differentiable
at 0, and A ¢ L(Rn) is nonsingular. Then each eigenvalue of

lF'(O) of odd multiplicity is a bifurcation point of (1.2.6), and tc

A
this bifurcation point (if one exists) there corresponds a

branch of eigenvectors of A7tr in R™ through O.

1.3 The Variational Problem

In this section we consider the eigenvalue problem (1.2.1)
under the added assumption that F and G are potential operators.
For this case a basic result of Ljusternik [1934] assures the existence

of eigenvalues. More specifically, we are concerned with finding
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nontrivial solutions of the problem

(1.3.1)  £'G)Y - ae'x) T =0, x e D, A e R

where f,g:D < RY » Rl are given functionals on a domain D. Clearly

{1.3.1) is of the same form as (1.2.1) with F = f'T and G = g'T; in
) . ¢ T n 1
particular, (1.2.6) is obtained for F = £’ and g:R™ - R,
1 T
gix) = 5 % Ax - r, with fixed g > 0 and symmetric and nonsingular

A ¢ L(R™). Hence all of the results of Section 1.2 apply to (1.3.1).
We now consider solving (1.3.1) as a special case of a minimiza-
tion problem. The following definitions are standard.

Definition 1.3.1 Let f:D R" - Rl and a set C € D be given. A

point x~ ¢ C is a relative minimum of £ on C if there exists a

neighborhood U(xo) of xo in D such that
. - R 0 0
(1.3.2) F{x) » f(&x), V¥xeU)np C.

Definition 1.3.2 Let £:D € R® > RL and G:D < R® > R® be defined on

the open set D and define a set C €D by

L

¢ = {x € plex = 0}.

P
fod
;

N
[#5]
s

Turther suppose that f and G are differentiable at xO € C. Then
ZS"\
%~ is a conditional critical point of f on C if there exists a

mn
b € R such that

£ xNT = o@D,

P
I“‘ k-
(98]
}_“x
S



33

The following result of Ljusternik [1934] characterizes the relative
minima of f on C for a special class of sets C. Our proof
follows Ljusternik and Sobolev [1955].

Theorem 1.3.3 Let f:D' € R” =+ Rl be defined on the open set D.

Suppose that G:D cr® » Rm, 1 <m < n is continuously differentiable
on D and let C be given by (1.3.3). If xo is a relative mini-
mum of £ on C and if £ is differentiable at xo and

rank G'(xo) = m, then xo is a conditional critical point of £

. on C.

Proof. Consider the linear space
(1.3.5) T={u ¢ RnIG'(xo)u = 0}

and its orthogonal complement TL and denote the orthogonal projec~
tion from R" onto T by P. Let U(xo) be as in Definition 1.3.1
and choose a fixed nonzero u € T arbitrarily. Then there exists a
vector y € R such that Py = u and, for sufficiently small t0 > 0,

we have, by the openness of U(xo), that X, = xo + ty € U(xo) whenever

0 < Itl < toe Moreover, L xo can be written uniquely as

X, - xo = P(xt—xo) +v, v E Tl

and therefore

(1.3.6) x_= xo + tut+v, Vv €‘Tf 0< |t] <t

t 0°

We consider the mapping




34

A
G(t,v) = Gx, = G ttur), v e T, 0 < |t] < ¢

i

’ A
It follows from (1.3.5) that, for any h ¢ T, BZG(O,O)h ='G'(xo)h =0

Il
implies h = 0 and hence that BZG(O,O) is nonsingular on TL. Since
0

é{O?Q) = Gx = 0, the implicit function theorem implies that there

exigts a & > 0 and a function v:[-8,8] € Rl + R" such that

2+ tu v e 0D, Yt e [-5,68],

e
It

v(0) = 0, v(t) e T

and
Gee,v(t)) = Glx+tutv(t)) = 0, Yt e [-6,0].

Therefore x € U(XO) nec, Yte [-§,8]. Moreover, v is differen-

tiable at t = 0 and so by the chain rule we obtain
1 O 1 ] O ]
(1.3.7) 0=G"(x)w'(0)) = C'x)Hv'(0).

Now, v{(0) = 0 implies that lim v(t)/t = v'(0). Also, it follows from
>0

v(t) € Ti, |t] < § that wTv(t) =0, VYweT, |[t] < § and hence that

wTv‘(O) =0, W¥we T, that is, v'(0) ¢ . Together with (1.3.5)

and (1.3.7) we see that v'(0) = 0. Consequently, for all sufficiently

small € > 0 we have
(1.3.8) v I/1t] = llve)-v@)-v' (O e/ || < e,

0 < |t| < 8(¢e) < 8.
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Now consider the one-dimensional mapping V¥:[-6,8] & Rl > Rl,

Y(t) = f(x0+tu+v(1;)). Then
7 == Owe|
< T%T {1£ Ptutv (£))-£ @) -£1 &0 (eurv (£)) | + |81 GOv(e) |3
¢ flewte (o) [0 e Creutv ()£ x0) =€ ) Ceubor (63) | [+ bo Ce] /1|3
+ et fv /el

Therefore, it follows from (1.3.8) and the differentiability of £

at xo that

Pr(0) = £'(x")u.

Because x, = xo + tu + v(t) € U(xo) nc, Vte[-§,8], we now con-

clude that f(xt) > f(xo), Yt e [-§,8]. Thus t = 0 is a local
minimum of 1 and hence y'(0) = 0.

Hence f‘(xo)u = 0 and, since u was an arbitrary nonzero
element of T, we must have f’(xO)T € Tl. Therefore, since TL
is spanned by the row vectors of G'(xo), there must be a vector
b € R such that (1.3.4) holds.

As a simple corollary we obtain the following result for (1.3.1).

Corollary 1.3.4 Let £f:D cr" » Rl be given on the open set D.

Suppose that g:D& R® » Rl is continuously differentiable on D

and define the set C by
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c={x eDlglx) = 0}.

Let xo £ C be a relative minimum of f on C and assume that £
ig differentiable at xO. If g'(xo)T # 0, then there exists a real

number ) such that
_ f'(xO)T = Ag'(xO)T.

If A ¢ L(Rp) is symmetric and nonsingular and g:Rn - Rl,

Yo
7

> (%

aQ

XTAx -~ ¢ where ¢ > 0 is fixed, then C = {x € D]'% xTAx =z},

. -1 0.T 0 ,
gtiX}T # 0on C and A "f'(x7)” = Ax . Because of its importance later

pof

or. we formulate this case as a separate corollary.

Corollary 1.3.5 Let £:D C R" Rl be given on the open set D.

Suppose that A € L(Rn) is symmetric and nonsingular and let

; 1T

0= {x ¢ D| =% Ax = [} with fixed 7 > 0. If XO € C is a relative

Fa

minimum of £ on C and £ is differentiable at xo, then there is

2z real number A such that

. - T
(1.3.9) A7t %) = axd

We again consider the existence of a proper branch of eigenvectors
0 S
through x . It turns out that for the variational problem (1.3.1)
we can obtain a result similar to Theorem 1.2.21 under simpler assump-

tions. The following theorem can be found in Krasnosel'skii [1964].

Theorem 1.3.6 Let f:DC RF'+-R1 be differentiable on §(O,p0) <D
where D 1is open and o0 > 0. Then f'%g(o,po) c R" > R" has a nontrivial

eigenvector on each é(O,p),’O <p g QO. Moreover, with A = I,
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(1.3.9) has a ‘proper branch of eigenvectors in §(O,p0).
Proof. Since é(O,p), 0 <pg Po is compact and £ dis
continuous on §(0,po), there is an x(p) £ S(0,p) such that

f(x(p)) = inf £(x). Hence Corollary 1.3.5, with A = I, implies
x€S8(0,p0) . . 1
that £'(x(p))* = M(p)x(p) with x(p) € 5(0,p) for some A(p) € R™.

Clearly Py # 0y implies x(pl) # x(pz) and hence the mapping
x =x(p), p ¢ (O,QO), is a proper branch of eigenvectors of (1.3.9)
in §(0,p0)‘

This leads to the following corollary which, in a Hilbert space

setting, is due to Golomb [1934].

1

Corollary 1.3.7 Let £:R™ > R be differentiable and suppose that

A é LER™Y) is symmetric and positive definite. Then A-lf'T:Rn + R"
has a nontrivial eigenvector on each é(O,p), 0 < p < o, Moreover,
(1.3.9) has a proper branch of eigenvectors in R".

Proof. Clearly the functional h:R" *’Rl, hz) = f(A—l/zx) is
well-defined and differentiable, Thus, by Theorem 1.3.6 h'T has
an eigenvector on each é(O,p), 0 < p <o, That is, there is a

y(p) € $(0,p) and A(p) € R such that h'(y(p))T = A(pP)y(p). Using

the chain rule it is readily verified that

-1/2

n'r(e)T = a7 261 @250y = M)y (o).
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872509,

Hence Aulf'(A—l/zy(p)fr= X(p)A—ljzy(p) and, setting x(p) =
we obtain A TE'(x(p))T = A(p)x(p).
Finally, we close this section with a result of Krasnosel'skii

[1964] on bifurcation points which we state again without proof.

Theorem 1.3,8 Let F:D € R® + R" be defined on the open set D

containing the origin. Suppose that FO = 0 and that F is differen-
r£iazble in a neighborhood of 0. Further, assume that ¥ is the
gradient of a functional £:D & R -~ Rl. Then every eigenvalue of
F'(0) is a bifurcation point of (1.3.9) with A = I, and hence (1.3.9)

, . . n
has a branch of eigenvectors in R~ through O.




CHAPTER II

A Convergence Theofy for a Class of
Nonlinear Programming Problems

2.1 Preliminaries

Consider the nonlinear eigenvalue problem

(2.1.1) '@t - ag' @) =0, xeD, Ae R,

where f£,g:D R% - Rl are continuously differentiable on the open
set D. As a result of Corollary 1.3.4 (Ljusternik [1934]) we may

replace (2.1.1) by a constrained minimization problem of the form
(2.1.2) min {f(x)lg(x) = 0, x € D},

and thus we are led to consider methods for solving such problems.
In this chapter we will study a general class of nonlinear
programming problems irrespective of its application to our non-
linear eigenvalue problem, and we begin with a short review of
basic results on unconstrained minimization. Suppose that the

functional f£:D C?Rn -+ R1 is to be minimized and that £ has a

uniformly continuous derivative on the open set D. Let xo be

any point in D and define Lo(f(xo)) to be the connected component

of the level set
0 0
(2.1.3) L(f(x")) = {x € D|f(x) < £(x )}

containing xo. We shall usually write simply L0 instead of
Lo(f(xo)). Assume now that £ 1is bounded below on L0 and that

39
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Lo, . . . .
L is closed. The latter assumption implies that LO is a proper
subset of D.

Recently Elkin [1968] obtained convergence results for minimiza-

tion sequences of the form

,,,,, o k+1 k k
{Z2.0.4) X =K - wkap , k=0,1,...

(2.1.5) 5 s £ET, k=0,1,... .

1-

Here p is a suitable search direction, Tk a basic step-

th, and wk a relaxation factor. Elkin's analysis is based on

the cobservation that the final convergence statement

{(2.1.8) 1im xk = x%, f'(x*)T = 0
koo

can be proved by showing the validity of a sequence of intermediate

, some of which depend essentially only on the steplength

ylgorithm and some only on the procedure for selecting the directiom.

k

- 0 . . . k
Suppose that x € L7 and consider any direction p for which

7 £ o5 > 0, 5] = 1.

it is easily seen that f(xk) > f(xk—Tpk) and hence that

T 1.
£ W

p € LO for T € [0,8] with some § > 0. This is the basis

and x 7 € L°. As a next step, it is proved for these steplength

algorithms,under the condition (2.1.7), that



.1.8) 1lim fv(xk)pk = 0,
k+00

P
[
i,«

, . ko .
Now the particular algorithm for choosing p is taken into
account in order to conclude from (2.1.8) that

(2.1.9) lim £' 57T = 0.

koo

Finally additional conditions on £, and sometimes also another

intermediate condition such as

(2.1.10) lim (x5-xFTT

koo

} =0,

allow the proof of (2.1.6) from (2.1.9).

For the verification of condition (2.1.8), Elkin [1968] intxo-
duced the concept of forcing functions. In order to extend his
results to the constrained case, we generalize the definition to
higher dimensions.

Definition 2.1.1 A functional ds[0,00)%e o %[0, ) = ’® + Rl is a

forcing function (F-function) of m variables if for any m

sequences {t?@ cf0,0), 1 =1,...,m

(2.,1.,11) 1lim @(tk,.,»,tk) 0 implies lim tk = 0 for at least one
1 m

koo koo i
1 <1< m.

Inn the case m = 1 we will usually call ¢ simply an F-function.

4oy function w:[0,*) » [0,») which is bounded away from zero on
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[a,») for oo > 0, or which is isotone and satisfies u(t) > 0 for
£ > 0 is an F-function. Moreover, the sum, product, and composition
of any two (isotone) F-functions is again an {isotone) F-function.

Clearly 1if 0:[0,°)x...x[0,) c " - Rl is an F-function of m

variables, then u:[0,%) - [0,%), u(r) d(t,...,t) is an F-function.

Furtherm “oe one

Furthermore, the product @(tls ,tm) ¢l(tl) ¢m(tm), of m
F-functions ¢i:[0’w) » [0,®), i=1,...,m, is an F-function of m
wvariables, and if @l,Qz are F-functions of m variables, so is @,
9t ,-vent ) = min ‘[®l(tl,.a.ytm)ﬂz(tl,.au,tm)}.

The wvalidity of (2.1.7) for a specific steplength algorithm

always obtained by first demonstrating that
+ -
(2.1.12) £x5) - £ 3 uE &P, k = 0,1,...

for some F-function u. This leads us to the following generaliza-
rion of the “principle of sufficient decrease " (Elkin [1968]).

1.2  Suppose that £:D < RT - Rl is G-differentiable and

. . . . k
bounded below on some set DO = D and that a given sequence {x }

D.. Suppose that there are m associated sequences

{0} @ [0,%), i =1,...,m, such that

0 « K K
(2.1.13) £ - £ 2 8t E), k= 0,1,...,

N . k
for some F-function ¢ of m wvariables. Then lim ti = (0 for at
k>

legst one 1, 1 € 1 < m.
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Proof. Since f 1is bounded below on D0 and (2.1.13) implies

k+
that £ 3 £TL), it follows that lim (£GxN)-£G 1)) = 0, and
‘ K00
hence, by the definition of F-functions of m variables, that
1im tg = 0 for at least one i, 1 < 1 < m.

ko
Note that for the case m = 1 this lemma applies immediately

to (2.1.12) with t? = f'(xk)pk and hence under the conditions of
Lemma 2.1.2, (2.1.12) implies that 1lim f'(xk)pk = 0. Connected with

koo

this result is a "comparison principle" also due to Elkin [1968].

Suppose that we.have two different steplength algorithms I and II,

k+1

and that at a point xk the application of I and II yields X

and x?;l, respectively. If {xi} satisfies (2.1.13), then in order

to obtain (2.1.13) for {X?I} it suffices to show that

k+1

1
IT )

fx

k+
< f(xI ),

for we have
k k+1 k k+1
£(x) - £(xr) 3 £(x0) - £(xp ) 3 @(t‘l‘,...,tk).
m

We shall see that also in the constrained case this principle will
be useful for proving results for several well-known steplength algo-
rithms. |

As mentioned earlier, in order to conclude (2.1.9) from (2.1.8)
the particular choice of direction pk must be analyzed. A very
important'class of directions {pk}, the so-called gradient related

directions, are defined by the inequality
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(2.1.14) £1 & s udle O, k= 0,1,...

where 1 is some F~function. For these directions clearly (2.1.9)
is a direct consequence of (2.1.8). On the other hand, there are
other classes of directions, such as those used in univariate
relaxation methods, for which (2.1.14) does not hold. In that case
{2.1.9) must be deduced from (2.1.8) with the help of specific
properties of the sequence {pk} and some additional assumptions
about f.

For several steplength algorithms, the condition (2.1.10) is a
consequence of the proof of (2.1.8). 1In other cases it can be
proved with the help of the following two concepts due to Elkin
[1968]. We use the terminology of Ortega and Rheinboldt [1970].

Definition 2.1.3 A functional £:D C:Rn -> Rl is hemivariate on a

get D, < D if it is not constant on any line segment of D that

0 0

is, if there exist no distinct points x,y € D0 such that

and f([1-tlxtty) = £(x), V¥t € [0,1].

(I-t)x + ty € DO

s , 1 ,
Definition 2.1.4 Given £:D < R" -+ R , a sequence {Xk} in some set

BG < D is strongly downward in D0 if

(1—t)xk + et e D> Yt e [0,1]

£ 2 £([1-t]x e 2 £, Ve e [0,1].

The indicated result of Elkin [1968] concerning (2.1.10) can



now be stated as follows (see Ortega and Rheinboldt [1970]).
Lemma 2.1.5 Suppose that the functiomal £:D < R" > Rl is continuous
and hemivariate on a compact set DO < D. Then every strongly downward
sequence {xk} c DO satisfies (2.1.10).

Finally for the proof of the actual convergence statement (2.1.6)
a result of Ostrowski [1966] plays a central role. Briefly it states
that,if £:D < R > R1 is continuously differentiable on a compact set
D, €D and {xk}“—’-D

0 0

the set of critical points & of £ in D0 is not empty and

lim [inf“xk—x"] = 0. In particular, if § consists of only one point
koo xeQ

x*, then (2.1.6) holds. We shall obtain a minor extension of this

is any sequence which satisfies (2.1.9), then

result in Section 2.2. It may also be mentioned that if § consists
of only a finite number of points and if, in addition to (2.1.9),
(2.1.10) holds, then we may still conclude (2.1.6). For the proof
we refer to Ortega and Rheinboldt [1970].

We closg this section with a discussion of two important
F-functions which will be needed in proving many of the results in
the succeeding sections.

Definition 2.1.6 Let f£:D cR" ~ Rl be continuously differentiable on

and DO & D. Then the function w:[0,®) - [0,®),

w(®) = swp (€' @£ T |xy € Dy Jxy| < 3,

is called the modulus of continuity of £':D < RY %-L(Rn,Rl) on D

0
. Clearly, w is isotone and w(0) = 0. Moreover, if D0 is

also convex and f' is uniformly continuous on D,, then the modulus

O,



46

of continuity of £' on D0 is well-defined and uniformly continuous
on [0,®) (see Ortega and Rheinboldt [1970]). If f' 4is not constant
on the convex set DO’ then it can be shown that the function
n:[0,2) + [0,°),

1
{2.1.15) n(t) = { w(ts)ds

is well~defined and strictly isotone and hence is an F-function.

Definition 2.1.7 Let £:D cr" » Rl be continuously differentiable

and assume that on some set DO <D

o = sup {“f'(x)-f'(y)“ X,y € DO} > 0.

Then the mapping 8:[0,%) - [0,%),

S0 inf {|x-y||x,y € Db £' )-£' (M| > t}, 1f t € [0,0)
) = _
lim_@(S), if te [CV«’OO)

s>

:s the reverse modulus of continuity of f£':D € R" - L(Rn,Rl) on D

I}

0°
As in the case of w, clearly § is isotone and 8(0) = 0. It
can be shown that if f' dis uniformly continuous, then 8(t) > 0 for

all £ > 0 and hence O is an F~function (see Ortega and Rheinboldt

[1970]).
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2.2 The Constrained Minimization Problem

We turn now to methods for the solution of a certain class of
nonlinear programming problems. In general, any such problem has

the form
(2.2.1) min {f(x)|x € C}

where £:D < R™ » Rl is a given functional and C <D a specific con-
straint set. In this section we discuss the conditions which will
be placed on fv and the constraint set C.

The underlying assumptions on f are essentially the same as
those made at the beginning of Section 2.1. Specifically, let
£:D =R" > Rl be differentiable on the open set D. Moreover, for
a given set C and xo € C, denote again by LO(f(xO)) the connected
component of the level set L(f(xo)) defined by (2.1.3). Then we
shall assume that £ 1s bounded below on LO N c.

For the remainder of this chapter C will always stand for the

constraint set
(2.2.2) c=1{xc¢ D[gj(x) <0, jeJyl

where gj:D = R® » Rl, jed,=1{1,...,m}, are given functionals

0
on the open set D. The precise properties of the gj, je JO’
will always be specified in each result. In most cases we will

need continuous differentiability. However, without exception we

shall always assume the three conditions:
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(i) int(0) = {x € Dlgj(x) <0, ¥Y3e JO} # {g}

{2.2.3) (ii) Every point of the set {x ¢ Clgj(x) = 0 for some j ¢ JO}

is an accumulation point of int{(C)
(iii) LO N C is closed.

The second condition excludes situations of the type shown in
Fig. 1{a), while the third excludes those of the type shown in

Fig, 1{(b).

(a)

Fig. 1.
For any X € C and € 2 C we define the index set
1,0 = 4 e 3| - < g, <0}

and use the standard notation IJ(X,€)| for the cardinality of
J{x,€). For any index set J CTJO we denote by JN or JL the

subsets of indices j € J for which gj . 1s a nonlinear or limear

functional, respectively. Many of our results will be based on the

following regularity condition for C.
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Definition 2.2.1 Let g,:D <R+ rY, € J, be differentiable on

the open set D. The constraint set C 1s regular if there exists

an € > 0 independent of x € C such that
(2.2.4) rank (gg(x)l{j € J(x,€)) = q <n, ¥xecC

whenever q = ]J(X,E)] > 0,

e

We note that if € is compact then we need only assume (2.2.4

i

[

with € = 0 gince the existence of an € > 0 can then be proved directly.
Further, our particular regularity assumption is mainly for convenience
of proof and similar results can be obtained under other types of

assumptions. TFor example, in the case of convex constraints, that is,

are convex, Zoutendiijk [1960] assumes

0

when the functionals gjs jeJ

. N . i i ;
that for each j € JO there is an x*¥ € C such that gj(xj) < 0. Another
regularity condition which is more general than ours is given by Altman
3 b} - - T
{19641 as follows: If 2 v.gl{x) =0, v, » 0, then v, = 0 for

7€3(x,0) 3 J

. N
joe T (x,0).
If € is regular in the sense of Definition 2.2.1, then it can
s . n
be shown that for any x € C there iz a nonzero s € R and a Tl > 0

such that
- T8 € C, ¥T¢ [OSTl]u

Any such vector s 1is called a feasible direction at x for the

0

constraint set C. Indeed, a small modification of the proof of

Temma 2.4.5 shows that there is a nonzeroc s € rRY such that
1s . N 7y . L
gj{x}s >0, &7 (x,0), gj&X>s 20, jeJ (x,00,

and hence, by the mean-value theorem, that s dis feasible

e . e e .
We now rephrase Definition 1.3.2 in terms of the constraint

set C.
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Definition 2.2.2 Let f:D «R" + Rl and gj:D CZRF - Rl, j e JO

be differentiable on the open set D. A point x of the constraint

set C 1is a conditional critical point of f on C if there exist

real numbers Vj, j e J(x,0) C'JO called multipliers, such that

) v.g' ()T, if J(x,0) # {4}
. jeJ(%,0) 373
(2.2.5) £F'&x)" =

0 , otherwise.

Note that without a regularity condition on C a point x € C
could be a conditional critical point of every functional in Rn,
for example, if the vectors gé(x)T, j € J(x,0) are linearly depen-
dent.

Two important results which characterize solutions of (2.2.1)
in terms of conditlonal critical points were given by Kuhn and
Tucker [1951]. We present them here without proof in a generalized
form given by Mangasarian [1969].

Theorem 2.2.3 (Kuhn-Tucker Sufficient Optimality Theorem) Let

£:0 e RT > Rl be pseudo-convex and differentiable, and gj:D<I R” > Rl,

j e JO be quasi—qonvex and differentiable on the open convex set D.
Assume that for some x* € C there exist multipliers vj,j e J(x*,0)
such that
frEmt = Y v gl v, < 0.
jeJ(x*,0) JJ J
Then x¥% 1is a relative minimum of £ on C.
Since the level sets of quasi-convex functionals are convex,
the constraint set C 1is, in this case, convex. As a consequence, the

usual existence and uniqueness results for minima of £ on C remain

the same as in the unconstrained case. For a discussion of the
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Pwé

characterizations of minima of £ in terms of the various types
of convexity, see Elkin [1968], Mangasarian [1969], or Ortega and
Rheinboldt [19707.

In order for the conditions of Theorem 2.2.3 to be necessary
for a point x* to be a relative minimum of £ on C we must
place an added gqualification on the conmstraint set C. A common
one was given by Kuhn and Tucker [1951].

1

ST . . - .
Suppose that g.:D o R+ R € J, are differentiable func-
P gj PR | 0

tionals on the open set D. Then the Kuhn-Tucker constraint qualifi-

e

cation is satisfied at XO € C if for each u € R with gg(xo)u £ 0,

0 s .
i e J(x,0) there exists a function x:[0,8] » R™ which is differentizble

at 0 and satisfies x(Q) = xg9 x{t) € C for all t ¢ {0”3], with some

i~ . dx . _
8§ > 0, as well as ( it )t=0 = \u for some A > O.

Theorem 2.2.4 (Kubn-Tucker Necessary Optimality Theorem) Let

A 1 -
£:0 « " + R~ and gj:D <R > ng ie JQ be differentiable on the

open set D  and suppose that x* 1is a relative minimum of £ on

the constraint set C. Assume further that the Kuhn-Tucker constraint

A

qualificaticn holds at x%*. Then there exist multipliers vjﬁ i J(x*,0)

T

£ (x%) v‘g%(X*)Ty vy < 0, 3 ¢ J(x*,0).

= v
jSJ%X*s@) J
The following lemma azllows us to apply this result to our particular

problem.,
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1

Lemma 2.2.5 Let gj:D cr® + R s J € J, be continuously differentiable

0

on the open set D and suppose that C is regular. Then the Kuhn-
Tucker constraint qualification holds at every point in C.

Proof. Let =x be any point in C. If x € int(C), then
J{x,0) is empty and the result is trivial. Suppose therefore that
J{x,0) is not empty and that u ¢ RY is any nonzero vector such that

q 1,

gl (x)u < 0, j e J(x,0). Let G:D< R" > R © and G,:D cr® >R 4,

g, + q, = §J(x,0)[ be defined by

(3]

e
it
]

(=]

1 (gj (x)), j e J(x,0), gJY(X)u

A

0.

[
L]
]

5 (gj %)), j € J(x,0), g5 (x)u

Since € dis regular, it follows that rank Gi(x) s and furthermore,
that u e T = {y ¢ Rn‘Gi(x)y = 0}. Hence, by the first part of the

proof of Theorem 1.3.3 we see that for some § > O there is a differen-

i
x:[0,8] € RY » R®, x(£) = x + tu + v(t), v(t) € T , v(0) = v'(0) = O

gsuch that

1]

Gl(X(t)> 0, vVt € [096}’

dx(t)

x(0) = x and (-—d—t——~)t

0=U.



i
L

Because Gé(x),u < 0 it follows from the continuity of

gg, ieJ, that there is a 61 € (0,8] such that

Gé(x(t))u < 0 for all t € [0,6.].

Now consider the mapping

qs
2:10,8.]1 € R- 2

=R 7, b(g) = Gz(x(t)).

Clearly b is differentiable and thus, by the mean-value theorem,

it follows that, for t ¢ (Ogﬁlj,

b{t)

it

b(0) + b"(D)t, t € (0,t)

il

0 + Gé(x(%))ut < 0,

Finally, from the continuity of gj9 j € JO it

A

is a 6 € (0953] such that

gj(X(t)} <0, jeJ,VvI{x,0, Vvt

0

A
Therefore x(t) € C, for all t € [0,8] and the
qualification holds.

We now consider diterative methods of the

(2.2.6) Lo kL wkrksk, k=0,1,...

(2.2.7) £ 2 £, k= 0,1,...,

is evident that there

A
e [0,6].

Kuhn~Tucker constraint

form
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for solving (2.2.1). Our interest is in gemeralizing the Elkin
theory for unconstrained minimization to the constrained case, and
accordingly we shall follow the same basic procedure as described
in Section 2.1. Since the constraint set C may not contain any
zeros of f'(x)T, it is evident that (2.1.6) and (2.1.9) need to be
modified appropriately and as a consequencé of Theorem 2.2.4 we are
led to use
{(2.2.8) lim xk = x*, f'(x*)T 2 vig! (x*) =0

koo ‘ jeJ(x*,0) 373

for some multipliers v;, j € J(x*,0) and

(2.2.9) lim [£' & - ) kv XS LT =
koo jed
. s ko, k © .
for some sequence of multipliers {vj, jedJ e« JO}k=O’ respectively.

This leads us to the following minor extension of Ostrowski's result
mentioned in Section 2.1.

Lemma 2.2.6 Let £:D < r" » Rl and gj:D c R -+ Rl, j € JO be continu-

ously differentiable on a compact set C, © C and suppose that

0

(¥} = C, is any sequence which satisfies (2.2.9) for some bounded

’ 0
sequence of multipliers {v?, j e J CIJO}k 0 Then, for some index
set J G:JO and multipliers vj, j € J, the set
' T
Q=1{x¢ CO]f (%)~ - Z v g (x) 0}
JEJ

of conditional critical points of £ on C 4is not empty and

lim [inf ”xk;x“] =
k> xe)



55

In particular, if Q consists of a single point x¥%, then (2.2.8)
holds.

Proof. Since CO is compact, {Xk} has a convergent subse-
k k. k

quence {x °} with, say, lim x Y= x. Since {J '} <J, and

K, , 1o . %,

{vj*, jed 1} is bounded, we may refine {x 1} so that J = J,

k k.
¥ i >0, and 1lim vji = V., j € J, for some limit set J of {J 7}

i-o0 =
Then, by the continuity of £' and g;, j e JO’ f'(x)T - z nggix}T = 0,
) jed
and hence, x € {. Now, let 6k = inf ka-xﬂ and suppose that
. ki %ER

1im ék = §. Then, since {x ~} must have a convergent subseguence

whose limit is in &, it follows that 6 = 0, which proves the result.

We turn now to the choice of the direction vectors. Since we
want the iterates of (2.2.6) to remain in L0r1 C, clearly the checice
of the direction sequence {pk} of (2.1.4) must be suitably restricted.
In fact, in the following sections we will consider directions, denoted
bv skﬂ for which it is not only guaranteed that the iterates remain
in LOfT C but for which it is possible to obtain an appropriate esti-
mate on the amount of decrease at each step. For this purpose we
will need to place another condition upon C.

Let t, = -max inf g,(x), then t. > 0 since int(C) # {f}.

. jeJ xeC
Define the mapping Yv:[0,%*) > [0,%) by

1

nin infllzyl|xy € ¢, g, = 0, g, () = -t),

. ] J

i’ 384 iE t e [0,6.)
(2.2.10) ~vyi{t) = € L¥sltq

lim v{g), if t € [tl,w).
s>

1
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It follows from the continuity of gj, j e JO that vy 1is well-defined,
nondecreasing and Y(0) = 0. The next result gives conditions for
v to be an F-function.

Lemma 2.2.7 Let gj:D < % +’Rl, j € J, be continuous on the open

0
set D, If either

}gj(x)~gj(Y)’ £ Bﬂx—yn, vx,vy € C such that

gj(x) = 0, gj(y) = —-t for j ¢ JO and t € [O,tl],

is compact, then v:[0,®) =+ [0,~) defined by (2.2.10) is

[

or if
an F-function.

Proof. Suppose that 0 <t < and that (2.2.11) holds. Then

t

for 3 € Jgs and %,y € C such that gj(x) 0 and gj(y) = ~t, we have

t8~l >0

-1
fx~y || > 8 1gj(X)-gj(y)l

independent of x and y. Hence this inequality helds also for the

infimum, and since J is finite, it follows that v(t) > O.

0

Wow suppose that € 1is compact and that Y(t) = 0 for some

t e (thlj. Since J, 1s finite, there exist a j € J. and sequences

0 0

{‘xK}:9 {yk} < C such that gj(xk) = 0 and gj(yk) = -t for all k and
1dm XK = x* ¢ C, 1lim yk = y* ¢ C as well as lim ﬂxk—yk¢‘= 0. There-
Y00 e ) ko

fore x¥% = y* and from the continuity of gj

O = gj(x*) = gj(y?‘(‘) = -t < 0,



contradicting the choice of t > 0. Hence Y 1is a nondecreasing
function for which t > 0 implies v(t) > 0 and thus <Yy is an F~
function.

Since we will need Y to be an F-function in order to cobtain
estimates of the type (2.1.13), we introduce the following defini-~
tion.

0

open set D. Then the constraint set € is admissible if

Definition 2.2.8 Let gj:D c R = Rl, i € J,. be continuous on the

Y {0, - [0,°) defined by (2.2.10) is an F-function.

In the subsequent sections of this chapter we will present our
generalization of Elkin's convergence theory as discussed in Sec~—
tion 2.1. As a result, we will be able to generate some new algorithms
for solving (2.2.1) and to obtain complete convergence proofs for
some well-known metheds, namely, Zoutendijk's [1960; procedure Pl,
p. 73] method of feasible directions and Rosen's [1960] gradient
projection method with linear constraints. In their convergence
proofs the separation of steplength and direction analysis is not
made clear and hence the applicability of other steplength algorithms
to theilr methods does not follow immediately. We should note that
Cannon, Cullum and Polak [1970] have also given proofs of these
methods which proceed in essentially the same manner as Zoutendijk
[1960] and Rosen [1960]. Topkis and Veinott [1967] have obtained some
results on the separation of steplength and direction analysis for

minimizations over a class of convex sets. Their results contain a
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proof of Zoutendijk's method for the special case of convex poly-
hadral constraints; but these results are not as general as ours
because the steplength analysis used requires that the direction
sequence {sk} have a uniformly feasible subsequence in the follow-

sense: If {xk} and {sk} are the sequences of (2.2.6), then

I, k,
it is assumed that there are subsequences {x 3} and {s 3} such that
k, k., k, k,
Tim x 9 = x*, 1lim s J = 5% and that for some § > C, x J-owsdec

E

for all 3 2 0 and all 17 € (0,8]. This condition is rather strong
since in general the limiting direction of a subsequence converging
#o @ solution of the problem need not even be feasible as the
following example in R2 shows.

Example 2.2.9 Let f,g:R2 +—Rl be given by f(xl,xz) = -x, and
glx,x%,) = ”Xuz -~ 1. Then applying Zoutendijk's [1960] method (P1)

to the problem
min {f(x)lg(x) < 0}

produces a sequence of directions whose limiting direction is tangent
to the unit ball at (O,l)T. Clearly such a direction is not feasible.
We will replace the condition of uniform feasibility by certain
weaker assumptions which allow greater freedom in the choice of
direction and steplength. Moreover, by eliminating the convexity
requirements our results apply to a larger class of nonlinear program-

ming problems.



2.3 Basic Steplength Analysis

Let xo be some initial point in € and x ¢ LO(f(xO)) i c = L@ 0 ¢
any given point. In this section we will show that for certain well-
known steplength algofithms and any suitably chosen g ¢ R with
f'(x)s > 0, ﬂs” = 1, the next iterate x — wTs is contained in 10 ac

T

and satisfies
(2.3.1) £(x) ~ f(z~wrs) > o(£'(¥)s,0,¢)

with some o > 0 and ¢ > 0. Here ¢ 1s a relaxation parameter, T is
the steplength determined by the particular algorithm and

9:[0,9) x [0,%) x [0,0) =R

+ [0, is some F~function of three variables.
Among the steplength algorithms considered here will be the constrained
analogues of a minimization procedure, and of the Curry [1944] and
Altman [1966] algorithms. We will also investigate how certain step-
length algorithms such as the Curry one-step Newton method and the
methods due to Ostrowski [1966], Goldstein [1964], [1965], [1966] and
Armijo [1966] can be modified to apply to constrained minimization.
Our presentation will follow that of Ortega and Rheinboldt [1970].

We first discuss the setting in which a2 suitable direction s ¢ R"
will be chosen., Clearly we want s to be feasible at x € C, in

~

other words, we need to know that there exists a T > 0 such that
N

0 be given

%z - Ts € C for T € {OBTl], Let uj:[O$M) > [0,°), j eI

F-functions with uj(O) = 0, and, for any x ¢ C, index set J ﬁtjﬁ

and O € [0,), consider the set
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N

(2.3.2) K(X,J,O) = {S € Rn “S“ =1, g:'](X)S > llj(O)Q jed,

. L
gg(x)s >0, j eJ}.

Then the following lemma of Zoutendijk [1960] provides a necessary
condition for feasibility.

Lemma 2.3.1 Let gj:D < Rr" a—Rl, j e JO be continuously differentiable
on the open set D. If s ¢ Rn, ﬂs" = 1 is feasible at x g C; then
necessarily s € K(x,J(x,0),0).

Proof. If J(x,0) = {@}, then clearly K(x,J(x,0),0) = R" and the
result is trivial. Suppose therefore that J(x,0) is not empty and that
s § K(x,J(x,0),0), ”s“ = 1. Then for at least one j € J(x,0) we
have gg(x)s < 0 and by the continuity of g5 there is an interval

10,1 >
L3, 1)9 Tl 0 such that

gg(x—Ts)s <0, ¥Tc¢ [O,Tl).

Thus, by the mean-value theorem, it follows that for any T ¢ (O,Tl),

(x-18) = g.(x) - 12! (x-T.8)s
g, (x-Ts) = g, (x) - Tg (x-Tys)

It

Ty e (0,1

- v — >
ng(x Tzs)s 0,
or x - T8 £ C which contradicts the feasibility of s.
In general, the condition s € K(x,J(x,0),0) is not sufficient for
s to be feasible at x € C. Moreover, it does not suffice to know

only the feasibility of s at x € C in order to guarantee a suffi-

cient decrease in the value of f at each step. TFor that we need
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to obtain, for each x € C and any suitably chosen feasible direction
s at x, an estimate for the quantity Ty 2 0 in the definition of
feasibility. This leads to the following result which plays a key
role in the remainder of this chapter. As discussed in Section 2.1,
wj9 ie deenotes the modulus of continuity of gg, ie JO on D and

nﬁ, i e Joﬁ the corresponding quantities of (2.1.15).
N .

Lemma 2.3.2 Let gj:D <R” » R s i e JO, have uniformly continucus

derivatives on the open convex set D and assume that the constraint
o~

get C is admissibie. Suppose that x ¢ € and s ¢ K(x,J{(x,e),0) for

-

some € > 0 and O > Q. If T% = sup {1 > le"ts e C, £t ¢ [0,7)}. then

aither
N
T* > @(0?8) > 0

A
where ¢:[0,) x [0,0) » [0,») is a forcing function of two wvariables

which depends only on C, ox
% = T = sup {t 3 Ojx-ts ¢ D} > 0.

S
Proof. 1If JQ is emptv, then C = D and 1% = 1. Suppose there~

fore that JG is not empty. For any j ¢ JN(X,e) the modulus of

continuity w, of g; on D is not idemtically zero and hence n. defined

J 3 3

by (2.1.15) is a continucus, strictly isotone F-function with n, ¢

Lot

-1
Consequently, nj :[0,%) » [0,») exists and has the same properiies as

Fal
ﬂjw Since D is open, clearly T = sup {t > O!x—ts g D} > 0 and for



62
any T € [0,7) the mean-value theorem shows that

gj(x—rs) - gj(X) + ng(X)s

£1[~Tg3(x-§Ts)s + Tg&(x)s]d;

il

1
T{ [gé(x) - g%(x—;Ts)]st

1
T{ wj(;T)dC = Tnj(T)-

n

Now & ¢ K(x,J(x,e),0) and j ¢ JN(X,E) imply that gé(X)s > pj(c)

and hence, together with gj(x) £ 0, we see that

gj(X—TS) < T(nj(r)—uj(c)), vt e [0,7), j¢ JN(X,€)~

Since ¢ > 0, it follows that
. N
T, =sup (T e [0,%)lnj(T> <uy(@}, 3 e I (x,0)

ig well-defined and positive. Moreover, by definition we have either

-1
T,= T (0)) or Ty = ? and therefore
j J

o

, N
g, (x-18) £ 0, WwTeE [O,Tj), jeJ (x,e).

Now consider any index j ¢ JL(x,e). Since s ¢ K(x,J(X,¢),0) and
ga{x) £ 0, it follows that h§ s > 0, hj = gj(x)T, and, again by the

mean~value theorem, that

. T A . L
gékX~Ts) = gj(X) - Thjs <0, wtel0,D, jeJ (x,8)-

¥inally, for all the remainjing indices j, we clearly have
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{2

: g'j {X"'TS) % 09 YT € EOsY(€>}9 j e JO(\’J(X&‘E)"

Since at least one of the sets JN(X,E)9 JL(X,E) and JOWJ(X,e)

is not empty, we obtain altogether
(2.3.3) g, (x-18) €0, ¥7e [O,min {T,8(0,0)}), ¥ 3 eJ,

Ay
where ®:[0,») x [0,w} » [0,») is given by

s [ -1 . N 3 PRSI |
(¢m1n {min in. (uj(tl))fj € JO},y(t2>j, if J,

3
|
A
{2.3.4) (e, ,t,) = -\)
BN e \\

(ﬁ y(tz), otherwise

N o . 1 » }}"\ "1
If J. is not empty, min {n. (L. () |3 ¢ JJJ =7, (U, (N
0 3 30773 0 ig g

is clearly an F-function, and by the admissibility assumption also

@

~
v is an F-function and therefore ¢ 48 in all cases an F~function
Eal
of two variables. Clearly o > 0, ¢ > 0 implies that ¢{g,er > 0 and

N N .. . ~ N
hence, by (2.3.3), that x - vs ¢ C for 7 ¢ E@,miﬂ{%w®(ggg)}}@

I

&
Therefore, we have shown that either t* 3 0(g,e) > 0 or % = T >

G

AP
and thus that min {Ts@(gse)} is an estimate on the quantity 71, in

A

the definition of feasibility.
This result is basic in proving the following gemeralization of
Elkin's [1968] fundamental lemma.

Lemma 2.3.3 Let £:D e RY » Rl be continmuously differentiable and

1

n . . .
assume that gj:D SR >R, 3¢ JO have uniformly continuous deriva-

tives on the open convex set D and that € is admissible., For

0 . ,
any x ¢ L 0 C and some 0 > 0, £ > 0 let s € K(%x,J(x,€),0) be such

o,
e
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0
that £'{x)s > 0. Then L i C contains an open interval (x,x—Tos)

with some To > 0. Moreover, if T > 0 is any number such that

{(2.3.5) f(x-18) < f(®x), ¥ x - T8 € (x,x—-Tls] n Lon C

then {X,this] N c C'LO n C.

Proof. By Lemma 2.3.2

v = sup {1 20x - ts €C, t € [0,7)} 2min {%,6(0,8)} >0

>

7

where ¢ is given by (2.3.4). Since D is open and £'(x)s > 0,

the continuity of f' implies that there is a T, € (0, *) such that

0
' {%x~Ts)s >0 fer all T ¢ [O,Tb). By the mean-value theorem we
conclude that f{x-Ts) < f(x) for all x - Ts € (x,x—Tos) and hence
that (2.3.5) holds with T, = min {T ,8(a,e)} > 0.

Suppose that the closed set [x,x—Tls] N LO N C is a proper
subsetr of Ex,x«Tls] n C. Then [x,x—Tls] n Lon C = [x,y] for some
v o€ L , v # x and hence, by (2.3.5), f(y) < f(x). But if y ¢ iO

and % ¢ LO fi C, then f(y) > £(x) > f(y) which is a contradiction.

This result contains that of Elkin [1968] for C = D except
that Elkin did not require D to be convex. We use that condition

o~

> guarantee in Lemma 2.3.2 the continuity of the moduli of con-
tinuity uﬁ of gg, j € Jg on D. If it is known beforehand that
o are already continuous, then the convexity assumption

can be dropped. The requirement that C be admissible is, in

the ugy i E JN

general, not very restrictive since,for example, the class of func-

rionals satisfying (2.2.11) is fairly large. Although the compactness
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assumption for C is slightly restrictive, a small modification of
Lemma 2.Z2.7 would show that it is sufficient to assume only LQ 0 C
to be compact, provided that the definition of Y is suitably medi-
fied.

We now begin our discussion of the steplength procedures.
Throughout the remainder of this section we will assume that at a

. O . ;
given point x € L C, a direction

{(2.3.6) s € K(x,J(x,£),0), £f'(x)s 3 0

has been chosen for some 0 > 0 and € > 0.  The basic steplength
algorithm for constrained minimization, used by Zoutendijk [1960]
and Rosen [1960] is the minimization on level sets without leaving

the constraint set. This algorithm is specified as follows:

P

At x € LO n C choose T so that

{(2.3.7)

S f(x-Te) = min {f(x—t*s)l[x,x—t's} CZLO(f(x))g% ch

In order to obtain an estimate of the form (2.3.1) we follow Elkin

[1968) and investigate first the following constrained version of

the Curry-Altman algorithm:
For fized & € [0,1) and with
(2,.3.8) T =sup {t >0]x ~t'seC, t' € [0, £)}

gsat T' = 0 if £'(x)s = 0 and otherwise
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2.3.9) ' = sup {t > O|f'(x~t's)s > pf'(x)s for t' ¢ [0,t)}.
Then define 1 by
(2.,3,100 T = min {t%, 1'}.

> that if C = D and ¢ = 0, then (2.3.10) is the Curry [1944] step-

h while for a > 0 it is the Altman [1966] steplength. Although

rhe case o > 0 is of little practical wvalue, it is useful in provid-

- vesults for other algorithms.

vem 2,.3.4 Suppose that £:D cr" - Rl and g,:D =R S Rl,
<

j e jq are continuously differentiable on the open convex set D,
and that C is admissible and Lorl C is compact. Assume that

0 n . e . .
% e L C and that s ¢ R satisfies (2.3.6), and with given

o e [0,1) and e (0,1] let 1 be chosen by (2.3.10) and w e [&,1].

0
» % - wts € LN C,

{(2.3,11)  f{x) z f([l-tlx + tix-wrs)) > flx-wrs), Wt e [0,1],

well as

f(x) - f(x-wts) » 0(f'(X)s,0,e)

for some foreing function ¢ of three variables which depends only
onn C and the steplength algorithm.
Proof. If £'(x)s = 0, then 71 = 0 and the conclusion of the

theorem is trivial. Therefore assume that f'(x)s > 0. Since D is
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convex and L [} C & D compact, we may enclose L™ 1 C in a compact
convex set DOe Then the moduli of continuity uﬁ of gg, 3 e J{x,e)

ém D0 are well~defined and continuocus on [0,x). Hence Lemma 2.3.72
A P

implies that either t% » ®(o,e) > 0, where & is given by (2.3.43,

or TH = T = sup 1t > le—ts € D} > 0, and Lemma 2.3.3 ensures the

existence of a Ty > 0 such that [xgx—ros] EiLO N C. Since f'(x)s > Q,

1

the number T given by (2.3.9) is positive. Moreover, if

% - ts € (x,x-T"s] N LG i C, thea by the mean-value theorem
f(x) - flx-ts) = tf’(x~tls)s > atf' (x)s > O

for some tq e (0,t), and thus (2.3.5) holds. Therefore, by
Lemma 2.3.3, [x,x-T's] [ CﬁZLO i C and hence, since w € 1 and 7T < 1%,
we have [x,x-prs] 1 € = [x,x~wrs] and x ~ wrs ¢ LO i C.

Now, by the defimition of 71 it follows that
Fi{x~ts)s > af'(x)¥s > 0, wt e [0,wT)

and hence f£(x~ts) is monotone decreasing on [0,wr] which implies that
{(2.2.11) holds.
For the proof of the last part of the theorem assume first that

¢ > 0. Then the mean-value theorem shows that for some t2 e (O,wty,

Y%

(2.3.12) f£f(x) - £{x-wis) = wa’(x~tzs)s hof ' (x)s.

0
constant on L~ f§ C, then

Hi

We estimate a lower bound for 1. If £

- g1 o A
we must hzve T = T and by Lemma 2.3.2 either 1% > ¢(g,c) or 1% = 7.
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, . s 0
Otherwise the reverse modulus of continuity- & of f' onL N C

iz an F-function. WNow, by (2.3.10) either T = 1% or
(2.3.13)  (1-)f'(x)s = £'(x)s - £'(x-18)s < [£' x)-£' (x-718) |.

in the first case it follows again by Lemma 2.3.2 that either

Th 3 g{@,a) or T* = T, Since [x,x-Ts] =1? ff C <D, evidently

i < T and hence, 1f 1% = ?, then (2.3.13) holds. Therefore, either
To» g{ﬁae) or {(2.3.13) applies. In the latter case the definition

of ¢ dmplles that

T 2 S{(1-a)f (x)s)
snd hence (2.3.12) can be continued to
(2,3.14)  £(x) - flz~wrs) » o(f' x)s,0,€)

3 = u&ml min {5((1~@)t1)9@(t2,t3)}. Clearly, ¢ is

re @{tlgtz,t
zn F-function of three variables.

Now suppose that o = 0, and, together with 71, consider a correspond-
1
2

ing steplength T obtained from (2.3.10) with g = +.  Then evidently

£{x-wTe) € f(x-wTs) and hence, by the comparison principle of Section 2.1

x0T
1 a

e s » - . 1 A
£2.3.14) holds with ®(t1,t2,t3) =5 gty min {s¢ E—tl),@(tz,t3)}.

i3]

We now turn to the steplength choice (2.3.7).

orem 2.3.5 Let £1D <R® » RB* and g5:D =r® > vY, 5 e Jg» be contin-
uously differentiable on the open convex set D. Assume that € 1is

admiseible and that L0 i C is compact. Suppose that x ¢ Loﬂ C and

that s € R satisfies {2.3.6) and that 1 is chosen by (2.3.7).



Then x - Ts € LOn ¢ and (2.3.11) holds with w = 1 as well as
f(x) - f(x~18) 2 ®(f'(x)s,0,€)

with some F-function & of three variables dependent only on C
and the steplength algorithm.

Proof. Since LOF\ C is compact, there is at least one 7T
such that (2.3.7) holds and hence x - Ts € Loii C. Now let T
be obtained from (2.3.10) with @ = 0, Then, by (2.3.7) we clearly

have f(x-Ts) € £(x~Ts) and hence, by the comparison principle of

Section 2.1, we obtain
flx) - £(x-18) > O (f'(x)s,0,8)

1 1 A . _ -
where @(t19t23t3) =35t min-{S(-§ tl)’ @(t2,t3)} is an F-function

of three variables. Finally, since [x,x-Ts] ¢IL0 n C we obtain
(2.3.11).

The next result is a generalization of an algorithm of Ostrowski
11966; Theoreﬁ 27.1] to the constrained minimization case.

Theorem 2.3.6 Let £:D < R" - Rl and gj:D eRrY +'Rl, j € JO’ be con-

tinuously differentiable on the open convex set D and assume that

C is admissible. Suppose that LO[) C 1is compact and that
5 ot 1 0
(2.3.15) {£ -2 | < Blx—v|, wxyei nc

Assume that x € LO i C and that s € R satisfies (2.3.6), and for given

& e (0,1] let
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(2.3.16) T =-% f'(x)s

and

. . A
w=T1*/1t, if ™*/T <

B << min’{2—$, T*/7}, otherwise
where T% is specified by (2.3.8). Then x - wrs ¢ LO N C and
F(x) - f(x~wts) > O(f'(x)s,0,¢e)

where ¢ 1is an F-function of three variables dependent only on C

#
and W,

Proof. For f'(x)s = 0 the result is trivial; hence assume that

f'{x)s > 0. Then, by Lemma 2.3.3, there exists an open interval

<X$X“TOS) C’LO nec, To > 0. Moreover it follows readily from

.3.153 that for [x,x-ts] CZLO nc,

7
N

.

3

(2.3.18) £(x) - £(x-ts) 3 tf'(x)s - % gt2.

By (2.3.16) and (2.3.17) we have wt < T* and hence x - ts ¢ C for

11 £t ¢ [Q,wr]. If now x - ts e (x,x~wts] [} LO i C, then by (2.3.18)

=1
&l

£G0) - £(x=ts) > t(£'(X)s - 5 BO) > t(Br- F BuD)

> tBT(l—'% (2-00)) —-% tTR0 > 0

and hence, by Lemma 2.3.3, [x,x-wts] = [x,x-wts] [} C CZLO i C, that is,
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X—wTSELOn C.

Again using (2.3.18) we have

(2.3.19) F(x) - F(x-prs) » Wif'(x)s u% (wr)?

2
RGOS - (£' (x)s)?

L
28

ti

w(2-w) (E* (x)8) 2.

A
W » W, then we can continue this inequality to

b

. 20) f(x) ~ f(x-wrs) 3‘5% &(2~&>(f'(x)s)2

e
Ny
Lo

since W{2~w) = 1 = (l~w)2 > 1 - (l—-&))2 = 0(2-0) .

Al
Or the other hand, if w < w, then wr = 1% < 1. Now by Lemma 2.3.2

# S
either T# » ®(0,c) where & is given by (2.3.4), or t* =

A
0 -
T = sup {t > OEths £ D}. In the latter case x - prs €L [IC <D

e : , A R,
implies that wT < T%, which means that w » w and hence that (2.3.20)

holds. Otherwise, by (2.3.16) and (2.3.18)
. 1
F(x) - f(x-1%s) » T*(£'(x)s- E—ﬁr*)
) ' 1 1 ' 1in N
> t*(£' (x)s- 5 B1) =5 T (x)s » 5 0lo,el i’ (x)s.
Altogether we therefore find that

f(x) - flzwrs) > ¢ (£"(x)s,0,¢)

Fa)

1 N ~ 2 . e
% t, min {6 (Zﬂn}tl,é(tz,tg)} is clearly an

where ¢ (t.,t 1

12tty) =

T-function of three wvariables.
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Another possible choice of steplength is obtained by taking

one Newton step towards the solution of the Curry-type equation
f'(x~Ts)s = 0

and by using a suitable relaxation parameter to ensure that

X - WIS € L0 i C (see Ortega and Rheinboldt [1970]). The next

result is a generalization of this process to the constrained
minimization case.

Theorem 2.3.7 Let £:D < R° +~Rl be twice continuously differentiable

and gj:DCZ R" +~Rl, j € JO once continuously differentiable on the

open convex set D and assume that C 1is admissible. Moreover,
0 , .
suppose that L~ 1 C is compact and that there exist constants

Ngs» Ny s 0 < Ny < Nys such that
2 " 2 O n
(2.3.21) nolel” < £'Gbh < nif[nf", vx el  flc, Vher.

Further, assume that x € LO N C and that s ¢ Rp satisfies (2.3.6),

and for given o € (0,1] let

{2.3.22) T = f'"(x)s/f"(x)ss

A
w = T1%/1, if T*/T < W
{2.3.23)

ky 0 <we<o=mnin {(Z/Yl)—ﬁ, t*%/1}, otherwise

where T% 1is again specified by (2.3.8) and
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f'"(x-ts)ss

Y f'"(x)ss

= sup { |t > o, f(x-t;s) < £(x), Vt; e (0,t]}.

1

Then x - WIS € L0 i C and
f(x) - f(x~wts) > o(f'(x)s,0,¢)

where ¢ is an F-function of three variables which depends
only on C and the constants & and Ny

Proof. Since x € LO N c, T and Yl are well-defined. For
f'(x)s = 0 the result is trivial, hence assume that f'(x)s > 0 and
therefore that T > 0. Then Lemma 2.3.3 implies the existence of an
open interval (x,x-TOS) C:LO nec, TO > 0. Moreover, if
x - ts € (X,x-WTs] n'LO N C, then by the mean-value theorem and

because of Yl s 1,
£(x) - £(x-ts) = t£' (s - 3 t26"(x-t's)ss, t' € (0,0)
> e (sl T [(2/y)-B1£" (et 's)ss/£" () ss)
> %—&tf'(x)s > 0.

Since (2.3.22) and (2.3.23) imply that wt € 7%, Lemma 2.3.3 ensures
that [x,x-wTs] = [x,x-wTs] N C= L0 N C. Therefore, x — WIS € LO i C

- and

A

(2.3.24) £(x) - £(x-wTs) > %~wwrf'(x)s.

If w > &, then using (2.3.21) and (2.3.22) we can continue (2.3.24) to

(2.3.25) £(x) - f(x-wTs) >-§ 52 ¢ %-)(f'(x)s)z.
1
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Onn the other hand, if w < 8, then wr= T* < 7. By Lemma 2.3.2 we

have either T* 2 6(0,8) where é is given by (2.3.4) or

1% = T = sup{t > O|x - ts € D}. In the latter case x - wTS E LO N C=D
implies that wt < T* and hence necessarily w > o, that is, (2.3.25)

holds. Otherwise it follows from (2.3.24) that

f@)—f@ﬂ%))%&ﬂfﬁﬂszéa&msﬁwws

and this together with (2.3.25) implies that

f{x) - £(x-wts) > ®(f'(x)s,0,€)

. . 1 a . & 2 , .
where @&tlgtz,ts) = 7 wt,min { ﬁitl’ @(tz,t3)} is clearly an F-function

of three variables.

Until now we have considered only steplength algorithms which
specify the steplength precisely. Another approach is to choose the
steplength arbitrarily from an interval of permissible values. Along
this line we investigate here the "Goldstein range' proposed by
Goldstein [1964]; [1965], [1966], and extend it, together with the
results of Armijo [1966], Elkin [1968], and Ortega and Rheinboldt

{19701, to the constrained case. The following algorithm is considered:

For £'(x)s = 0 set oy = 0, otherwise, let a; > 0 be such that
(2.3.26) Clalf'(x)s s f(x) - f(x—uls) < gzalf'(x)s

where 0 < Cl g CZ < 1 are fixed numbers.
The next lemma, whose proof can be found in Ortega and Rhein-

boldt [1970:; Theorem 8.3.2] concerns the solvability of the inequali-



i
1

ties (2.3.26).
Lemma 2.3.8 {(Goldstein [1964]) Let £:D cr" > Rl be continuously
differentiable on the open set D and suppose that x € D, s ¢ R"

and t > 0 satisfy £'(x)s > 0, [x,x-ts] © D and
£(x) - £(x-ts) < Cltf'(X)s

with some Cl € (0,1). Then for any Cz € [gl,l) there is an

w e (0,1) such that (2.3.26) holds with o = wt ,

We note that the next two results require the set D to be

convex even in the unconstrained case.

Theorem 2.3.9 Let £:D R > Rl and gj:D = R" + Rl, j € JO, be

continuously differentiable on the open convex set D, and assume
that C is admissible and L(f(xo)) Nl C is compact. Suppose further
that x € L(f(xo)) l ¢, and (2.3.6) holds for s € R™ and that T > 0

is any number satisfying (2.3.26) with a; =1 for fixed 0 < Cl < CZ < 1.

Let T* be given by (2.3.8) and w* € (0,1] be such that (2.3.26)

holds with al = W*T*, Moreover, specify w by

1, if T € 1%
(2.3.27) W = T*/T, if T% < T and f(x)-f(x-T*s) > ClT*f'(x}s

wkT* /T, if T% < T and f(x)-f(x~T*s) < ClTT’"f"(x)s°

Then x - wTs € L(f(x)) N C and

f(x) - f(x-wts) > ®(f'(x)s,0,€)



for some F-function ¢ of three variables dependent only on C and
the steplength algorithm.

Proof. For f'(x)s = 0 the result is again trivial. For
£'{xYs > 0 it follows from x € L(f(xo})ﬂ C and Lemma 2.3.3 that
there exists a T > 0 such that (2.3.26) holds for a; =T Then,

from (2.3.27) we have wt € T* and

f(x) - £(x-wts) > g,wtf'(x)s > 0

1

and hence x - wTs € L(f(x)) N C. Moreover, by the convexity of D,
w - ts €D, WVt e [0,wT].

Now, by Lemma 2.3.2, either 1% 2 g(o,e) where % is given by
{2.3.4) or T% = T = sup{t > O{x - ts € D}. In the latter case
% - WTs € LE®)) N C <D implies that wr < 7% and hence that the
second condition in (2.3.27) does not apply. If the second condition

holds, then T* 2 6(0,8) and
‘ g
(2.3.28) EG)-£(x-1*s) > ;T ()8 3 g10(0, )T (x)s.

On the other hand, if either the first or third condition of
(2.3.27) applies, consider the modulus of continuity ¢ of f£' on
some compact convex set D0 <D containing L(f(xo))n C.i Clearly w 1is
well-defined and continuous on [0,o) and hence so is n(t) = gla(tg)dg,

Moreover, using the mean-value theorem it is easily seen that
f(x) - f(x-wTs) > Wrf'(x)s - wmn(wr).

Therefore, by (2.3.26) with o = wr we have
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czwrf'(x)s > wif' (x)s - wmn(wt)
and hence
(2.3.29) Nwt) = n(r) (1-£) ' (s,

Here ﬁ:[O,w) -+ [0,») is any strictly isotone function such that
ﬁ(t) > n(t), for all t > 0, and therefore that ﬁ_l exists and
is a strictly isotone F-function. Thus (2.3.26) and (2.3.29)

imply that

£Gx) - £(emwts) 3 LwiE' (x)s > L,E'(o)s ﬁ“1<<1—;2)f'(x>s).

1

Together with (2.3.28) this shows that
f(x) - f(z-wrs) 2> ¥(£f'(x)s,0,8)

. a~1 2 .
where @(tl,tz,tB) = Cltl min {f ((l—Cz)tl),®(t2,t3)} is clearly an
F~-function of three variables.
The choice of wT by (2.3.27) is not constructive but is the
basis for the following algorithm:

Goldstein-Armijo algorithm: Constrained case

Let u be a fixed F-function and o ¢ (0,1) and B > 1 given
constants. Let x € L(f(xo))n C and s ¢ R" satisfy (2.3.6).

I. Basic steplength selection: If f'(x)s = 0, set

T= 0; otherwise let T > 0 be any real number such that
T3> u(f'(x)s).

IT. Choice of relaxation parameter: If T < T* and
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{(2.3.30) f(x) - f(x-18) 3 atf' (®)s

set w= 1, If t > 1% or if (2.3.30) is not satisfied,
let ® be the largest number in the sequence {B“J}§;l such

that WT € T% and
(2.3.31) f(x) - f(x-wTs) > anT f'(x)s

where T* 1s given by (2.3.8).
Neote that if € is admissible and D is open then it follows from
Lempa 2,3.3 that x - B—jrs e C for sufficiently large j, and from
Lemma 2.3.8 that (2.3.31) can be satisfied.

Theorem 2.3.10 Let £:D <R" R1 and gj:D = r" > Rl, ie JO be

continucusly differentiable on the open convex set D and assume
that € dis admissible and that L(f(XO)) N C is compact. Suppose
that x € L(f(xO)) N c, se¢ R" satisfies (2.3.6), and that T and
w are selected by the Goldstein-Armijo algorithm. Then

x - wis € L(EX)) N ¢ and
f(x) - £(x~wrs) > ¢(£'(x)s,0,¢)

where ¢ 1is an F-function of three variables dependent only on C
and the steplength algorithm.

Proof. Assume that f'(x)s > 0, then (2.3.30) and (2.3.31) imply
that f£{x) - f(x-wrs) > 0 while by the definition ¢, wr < t*; and

hence x -~ wts € L{f(x)) n C.

If (2.3.30) holds, then

(2.3.32) fx) - f£(x-wrs) > &f'(x)Sp(f'(x)s).
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On the other hand, suppose that (2.3.31) holds. Then by the defini-

tion of @ either Bwt > T* or
(2.3.33) f(x) - f(x-Bwts) < &Bwa'(x)s.

Let & denote the reverse modulus of continuity of £f' on L(f(x)) nC.
We may assume that = f' is not constant on L(f(xo))ﬂ C and hence

that ¢ is an F-function. Suppose that Byt > 1% and consider the
steplength T obtained by the Curry-Altman algorithm with ¢ = O.
Then,by Theorem 2.3.4,[x,x-Ts] CILO NCand T < 7%, and as in that

theorem either T > @(0,5), where % is given by (2.3.4), or

f'(x)s = £'(x)s - f'(x-1s)s

n

[£'x) - £'(x-78) .
In the latter case T » &(f'(x)s) and hence
T > min {8(£'(x)s),8(0,e)}.
Using BWwT > T* > T we see that
f(x) - f(x-wTs) > awTf'(x)s

(2.3.34) > 3 £' (s min {8(£" (x)8),6(0,€)}.

Finally, suppose that BwT € T* and that (2.3.33) holds. If
x - Bwts ¢ L(£(x)) ) C, then we again have Bwt > T and (2.3.34)
holds. Otherwise, because of (2.3.33) there is a t" g (0,RBwr) such

that
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£' (x—t"s)s = B_;LE (£ (x)~f (x-BwTe)) < af'(x)s
and hence that

(L-) ' (x)s < ”f'(x) - £ (x~t"s)

‘o

BwT > t'" > S((1-0)f'(x)s)

and, by (2.3.31)

3]
)

.3.35) F(x) - f(x-wrs) > 2 £'(x)s8((1-a)f" (x)s).

e

wIie |

Now {(2.3.32), (2.3.34) and (2.3.35) together give

f(x) - f(x-wts) > ¢(£'(x)s,0,8)

at.
1 ., - n
where ®<t1’t2’t3> = "’B—" min {]J (tl)BQS(tl)’ﬁ((l"u)tl)a®(t29t3)}

is clearly an F-function of three variables.

2.4 Zoutendijk's Method of Feasible Directions

Zoutendijk [1960] considered iterations of the form

xk+1 xk - Tksk, f(xk+l) < f(xk), k=0,1,...

P
[
o
s

| =

Nt
il

for a special choice of feasible directions {sk} and a steplength

sequence {Tk} given by (2.3.7). In this section we will obtain
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a simple convergence proof of the method as a consequence of the
basic estimate (2.3.1). We will also show that, under suitable

assumptions on £ and gj, j € J., all of the steplength results

0
of Section 2.3 can be used in connection with Zoutendijk's method.
Before proceeding with this, we require the following well~known
result of Gordan [1873] on linear inequalities which we state
without proof.
Lemma 2.4.1 Let A be an m X n matrix. Then the system of inequal-
ities Ax > 0, x € R” is inconsistent if and only if ATu = 0 for
some u € Rm, u € 0 such that uj < 0 for at least one j, 1 € j € m.
In other words, Ax > 0 is inconsistent if and only if the
rows of A are linearly dependent with coefficients of one sign.
We now turn to the particular choice of a feasible direction s
at x € C considered by Zoutendijk. For this the following notation

1 1

will be useful: Assume that f£:D =R"™ = R™ and gj:D <r” > R ,

j € JO are G-differentiable on the open set D. Let ﬁO’ ﬁj:[O,m) >~ [0,%),
j e Jg be given continuous, strictly isotone F-functions for which

ﬁO(O) = ﬁj(O)'= 0 and, for j =0, j € Jg, define uj:Rl - Rl,

t, if t & (~»,0)
uj(t) =
ﬁj(t), if t € [0,).

For any x € D, ¢ ¢ Rl and fixed index set J c:JO consider the set

(2.4.2)  R(x,3,0) = K(x,3,0) N {s e R*|£' (®)s - u (@) » 0}

where K(x,J,0) is given by (2.3.2). Define the mapping o(+,J):D cR™ » Rl

by



82
(2.4.3) 0(x,J) = sup {0 € RV |R(x,7,0) # {g}}.

Some of the propertiés of ﬁ(x,J,O) and 0(x,J) are summarized in the
following sequence of lemmas. We note that on the basis of the
definition (2.3.2) of the sets K(x,J,0) the linear constraints do
not affect the value of o(x,J).

Lemma 2,4.2 Let £:D =R > Rl and gj:D =Rr" > Rl, j € JO be G-

differentiable on the open set D. Let x .be any point in D

and J CTJO a fixed index set. Then 0(x,J) given by (2.4.3) is well-

(o e R R(x,3,0) # (B}} = (==,0(x,7)]1,

in particular, ﬁ(x,J,O(X,J)) # {g}.

Proof. The set ﬁ(x,J,O) is closed and contained in the unit
sphere and hence is compact. Therefore, using the assumed properties
of Y Uj’ ie JN, we see that o(x,J) is well-defined and that

Kix,7,0) # {@) for all ¢ & (-=,0(x,J)). Now let {Gk}f;o be any

gequence in (~o,0(x,J)) such that lim Ok = 0(x,J). Clearly
. koo
K{xﬁjsok) # {0} for any k and hence we may choose vectors

A
s e K(x,J,0), k=0,1,... . It is no restriction to assume that

1im sk = s*, “S*“
i 0

1 and hence it follows that

N\

' k . N B k . L
J(x)s Y, (g ), eJ, gl(x)s 20, e J
83( ) J( k) 3 83( ) 3

f'(x)sk

\%

INCHN Is“ = 1, k = 0,1,...



Thus, going to the limit and using the continuity of Hg? uj, jed

we have
' . . N . . L
£'(x)s* > uo(c(x,J)), fls*|| = 1.

This completes the proof of the lemma.
Lemma 2.4.3 Let £:D cRr" - Rl and gj:D c=R" »> Rl, j € JO be
G-differentiable on the open set D. Let x € D be given and

Jl C=J2 CZJO fixed index sets. Then

A A 1
K(Xv]zsc) CK(Xle,G)y G egR

and
G(X,Jz) S O(X,Jl)-
A
Proof. Suppose that s € K(x,Jz,O(x,Jz)). Then
g'(x)s - W.(0(x,3,)) 0, j¢€ JN g'(x)s 20, j€ JL
] o2 ’ 2 % S
£'(x)s - U (0(x,3,)) 20,

and clearly Jl C:J2 implies that these relations hold also for

j € Jl. Hence by (2.4.3), O(X,Jz) € O(X,Jl). If o > c(x,Jz)3

then ﬁ(x,Jz,c) = {@} and we are done. Therefore assume that

A
o < c(x,Jz) and s ¢ K(x,Jz,c). Then

83

o1
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. N g . L
gj(X)s - Uj(U) 0, j&J,, gé(X)s 20, jE& Jos

£'(x)s - (0 2 0,

and hence, since J <=J2, these relations also hold for j € J

1
A
which implies that s € K(X,Jl,U).

1

The next lemma will play a key role in our convergence proof

of Zoutendijk's method.

Lemma 2.4.4 Let £:D =R" ~ Rl and gj:thRP - Rl, j € JO be contin-

uwously differentiable on some compact subset DOCZZD. If J C:JO is

some fixed index set, then 0(',J):DO <r" ~ R1 is uniformly continuous

D..
on 0

Proof. Let x* be any point in D and suppose that 0(-,J)

0

. . . k .
iz not continuous at x*. Then there is a sequence {x} CIDO with

idm xk = X% € DO and an € > 0 such that for any kO 2 0
leooo

S

]uj(c(xk,J))—uj(o(x*,J))[ > € for some k > ko, i=0,3c¢ JN,

Since DO is compact, it follows from the continuity of f' and

7

gjs 3 £ J that the sequence {O(xk,J)} is bounded. Therefore we
k. k.,
may pick a subsequence {x l} CZ{Xk} such that lim x © = x*,
k. 1 i
iim o(x l,J) = g% ¢ R7 and
4 =00
k. N
R I Gl l,J))—uj(O(x*,J))l >e, Vi, §=0,3j¢eJ

k k k
. N . .
Now choose s = € K(x l,J,O(x l,J)); then we may refine all of the
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k.
subsequences so that also lim s 1 = 5. Hence for each ki we have
>0
ki ki : ki N ki ki L
g;(x )3 —uj(U(X ’J))ZO,jEJ,gJ!(x )S Zo’jejﬁ
k., k, k

£r(x s T - uy(o(x 5,1 3 0,

and thus, by the continuity of f' and 'gj, jeJon DO and the

continuity of Ho» uj, je JN it follows that

%@ﬂé-%wMzo,jeﬁ,%@ﬂézmjeJﬁ

£'(x%)s - uy(o*) 2 0, 5] = 1.

This implies that O* < O(x*,J) and consequently, by (2.4.4), that

uj(c*) < uj(o(x*,J)) -€g,j=0,173c¢ JN. Therefore, for all 1 = iO we have
ki € N
uj(o(x »J)) < uj(o(x*,J)) -55,3=0,3¢eJ.

A
Choose s* & K(x*,J,0(x*,J)). Then

s ) Ge)sk > (u (9 Gex, 1)) 7239

|

£' (x*)s* > (ug(0(x*,9))-
' . L
gj(x*)s* 20, jeJ.

By the continuity of £f' and gg, j€ JO’ there exists a

§ > 0 such that for ||x-x*[ < &

If'(x)s* ~ f'(x*)s*! S-%

and
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‘ N
T(x)sk - gl (x¥)s*| < &, e .
|85 () HCOES IS A
Hence,
£F'(x)s* 2 £'(x¥*)s*- }f'(x)s* - f'(x*)s*l > £ (x*)s* —-%
and similarly
€ N
T(®)s* 2 gl (x®¥)s* ~ =, T .
gJ( ) gJ( ) 5 > 3

Thus for ||x-x*|| < § we have

£ € £
3 % * - - = = * - =
s 2 u(0Gkk, D)) - F - o= pyOGED) - S,
' * * -&_E_ * - £ N
gj(X)s 2 uj(c(x I -5 -3 uj(O(x J)) -5, Jed
k. ki
Since lim x ©~ = x* il > io can be chosen such that “x —x*“ < 8,
100
for all i 2 il and hence that
ki € ki € N
Fr(x s* 3y (cx*,3)) - 5, gg(x )s* > uj(O(X*,J)) -5, jed,
k.
gj(x l)s* 20, je JL.
> ki N
Because of uj(o(x*,J)) - §-> uj(o(x ,J))s §J =0, § € J, this contradicts

'3

{2.4.3)., Therefore, there exists no sequence'{xk} CIDO such that lim xk = x¥
koo
and lim G(xk,J) # 0(x*,J). Hence 0(°,J) is continuous on DO’ and since
Teseo
D, is compact, it is also unifoxrmly continuous.

For regular comnstraint sets it is now possible to characterize
A
the conditional critical points of f on C in terms of K(x,J,0(x,J))

>

and ¢g{(x,J). We first obtain the following lemma.
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Lemma 2.4.5 Let £:D <R" » R:L and gj:D 3% *Rl, j e JO be
differentiable on the open set D. Let x* be any point in C

and J CZJO a fixed index set such that the gradients g%(x*)? jed

are linearly independent. If o(x*,J) < 0, then

2.4.5) v’ G0+ ] vglan® =0,

<0, v, £0, j eJ.
j€J J J

Yo

Proof. By (2.4.3), o(x*,J) € O implies that the system
\ ‘ ] - N [} 2 - L
£ (x*)s 3 1y(0), gj(X*)s 2 uj(c), jed, gj(X*)s 20, jed,

.. . . . N
is inconsistent for o > 0. Since uo,uj, j € J are continuous,

strictly isotone functions with uO(O) = uj(O) = (0, also the system

(2.4.6) f'(x*)s > 0, g&(x*)s >0, jed
is inconsistent and therefore, by Lemma 2.4.1, we have

wE G+ T uglaR)’ =0, vy <0, v, €0, § e,
jeJ J-] J

where at least one of these numbers is negative. For Vo = 0 the

gradients gs(x*)T, j € J, would be linearly dependent, against assump~-

tion; hence v. < 0 and (2.4.5) holds.

0

The next result is essentially due to Zoutendijk [1960].

1

Theorem 2.4.6 Let £:D =R™ - R' and gD =R >R, j €J., be

O’

differentiable on the open set D and assume that the constraint
set C 1is regular. Then x* € C is a conditional critical point

of f on C with nonpositive multipliers if and only if
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ox*,J(x*,0)) £ 0.

Proof. Suppose. that O(x*?J(x*,O)) € 0; then by the regularity
of .C, it follows from Lemma 2.4.5 that x* satisfies (2.2.5) with
Vj < 0, j € J(x*,0), and hence that »x* is a conditional critical
point of £ on C.

Conversely, suppose that x* € C is a conditional critical point

of £ on C with nonpositive multipliers and that O(x*,J(x*,0)) > O.

Then, choosing s* ¢ ﬁ(x*,J(x*,O),O(X*,J(x*,O))) we would have
FGsE 3 py(OGX,IGK,00)) > 0, g (R)s* 3 0, 5 e It xx,0)
8} Gek)s% 3y (0Gxx, T (x%,00)) > 0, § & I (x%,0).

But since (2.2.5) holds with Vj £0, j € J(x*%¥,0), this leads to

0 < f'(x%)s* = ;E V.g!l(x*)s* £ 0
jeI(x*,0) 3

which is a contradiction. Therefore, necessarily o(x*,J(x*,0)) < 0.
The last reéult related f'(x)s and 0(x,J(x,0)); however, in

addition to these two quantities the basic estimate (2.3.1) also

contains the number € which controls the proximity of x to the

boundary of C. The following lemma brings this € into relation

with the other quantities.

Lemma 2.4.7 LetV:[0,») - [0,2) be any step function such that

PY(0) = ¥(t) > 0 for all t ¢ [O,tO] with t, > 0 and y(t) = constant

0

for all t ¢ [tl,m) with t1 > tO. Further assume that ﬁ:[O,m) > [0,0)
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A
is any isotone function for which ﬁ(O) =0 and U(t) > 0 for t » 0.

Then, for given t, > 0, the quantity
e =2 sup {t e [0,e,]100(e)) - £, 20, £, € [0,t])
2 >T2 3 3 > 73 "

is well-defined and positive, and yY(g) > O.

Proof. Since ﬁ is isotone and G(t) > 0 when t > 0, it follows
that ﬁ(w(t)) > 0 for t ¢ [O,to] and clearly ﬁ(w(t)) = constant for
t g [tl,m). Consequently the set {t ¢ [O,tz]‘ﬁ(w(t3)) - t3 > 0,
ty € [0,t]} # {Q} and ¢ z«%-min {to,tz,W(O)} > 0 is well-defined.
Finally, from ﬁ(w(g)) 3> £ follows that w(g) > 0.

We note that Lemma 2.4.3 .shows that for any x € C such that
o(x,J(x,0)) > 0 the mapping

o(x;J(x,8)), if o(x,J(x,8)) 2 ©
P:[0,0) > [0,2), Y(8) =

0, otherwise

is an antitone step-function which satisfies the hypothesis of Lemma
2.4.7. Hence the € of Lemma 2.4.7 is well-defined and positive,
and O0(x,J(x,€)) > 0. Moreover, because of the antitonicity of

fi(v()), the definition of € simplifies to
1 A
2.4.7)  e=3sup {83 0lU(y(s))-s » o},

Furthermore, if {xk} is any sequence in C for which the correspond-
- le } and loG, 3¢5, )} nined
ing sequences €k and 0(x ,J(x ,€ ))J are determined by (2.4.7)

and are positive, then clearly lim €
. ke K

lim O(Xk,J(xk,ek)) = 0. We now characterize Zoutendijk's choice of

as

= 0 if and only if



90

1

feasible directions. Suppose that £:D <R® » R' and gD =Rr" > R,

ie JO’ are continuously differentiable and that C is regular.
Moreover, let ﬁ:[O,w) + [0,») be as specified in Lemma 2.4.7.
Consider any point x din the compact set L0 N c. 1If

O{X9J<XSO)>‘< 0, then by Theorem 2.4.6 x 1is a conditional critical

point of f on C and the iteration is terminated. If

o{x,J(x,0)) > 0, then the Zoutendijk direction algorithm has the

form
((i) choose € by (2.4.7)
(2.4.8) <
A
(ii) choose s € K(x,J(x,€),0(x,J(x,€))).
We observe that Zoutendijk [1960] considered only the case
yO(t} =g, uj(t) = ajt, uj >0, jE Jg. Furthermore, our choice

]

f ¢ 1is somewhat different from that of Zoutendijk [1960] although
the effect is the same. Finally, Zoutendijk discusses various nor-
malizations of s including our case ”s" = 1., Tor ease of notatiomn
we have restricted ocurselves to “su = 1 although all of our results
would remain valid for any other normalization as long as the
generated sequence of directions remains bounded away from zero

and infinity.

We now turn to the question of the convergence of Zoutendijk's

method to a copditional critical point of £ on C. In order to
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simplify the proof, we first isolate two lemmas; the first one
concerns the remaining relationships between the quantities

f'(x)s, O(x,J(x,€)) and € as they are generated by the algorithm.
Lemma 2.4.8 Let £:D er* -+ R:L and gj:D =R* > Rl, j € JO be con~-

tinuously differentiable on the open set D and assume that C

is regular. Let {xk} be any convergent sequence in a compact subset

C0 <C with lim xk:= x*, Furthermore, let {ek} be any sequence
koo
of nonnegative numbers such that lim € = 0 and assume that the
k>

sequence {O(Xk,J(xk,ek))} is nonnegative and satisfies

1im G(Xk,J(Xk,Ek)) = 0. Then for any sequence (¥} with
koo
sk € ﬁ(xk,J(xk,ek),G(xk,J(xk,ek))) and 1lim sk = g%, we have

krco
1im f'(xk)sk = f'(x*)s* = 0.
koo
A
Proof. Since sk I K(xk,J(xk,ek),G(xk,J(xk,ek))), we have
f'(xk)sk > U (U(xk,J(xk,e ))) 2 0 and hence lim f'(xk)sk =
0 k oo

f'(x*)s* > 0.. Suppose that f£'(x*)s* > 0. Because JO is finite,

‘{J(xk,ak)} has a limit set J* and we may choose a subsequence
k k, k

{x '} < {x*} such that lim x * = x*, lim s 1 = g*, lime, =0
k, 0 ioeo k ise Ui
and J(x 2€1 Yy =J%, 1 2 0 as well as lim Oo(x i,J*) = 0. "By
i 400

Lemma 2.4.4 0(+,J%)is continuous at x* and hence evidently

o(x*,J%)= 0, Therefore, because of the continuity of f',g%, je JO’

' . N . N
and uo,uj, je JO and because uO(O) = uj(O) =0, je¢ Jb, we have

f'(x*)s* > 0, gi(x*)s* > 0, j e J,
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Now by Lemma 2.4.5, 9(x*,J%)= 0 implies that (2.4.5) holds and

hence the assumption £'(x*)s* > 0 leads to

-

0 > V' (x¥)s* = Y (-V.)g! (x%)s* 3 0 .
JE

This is a contradiction and therefore f'(x*)s* = 0.
The next lemma will allow us to conclude that O(x*,J(x*,0)) €0
. . k
for a limit point x* of {x }.

1
Lemma 2.4.9 Let g,:D <r" >R , j € J, be continuocus on the open

e e 3j 0
, . k \ . k
set D. Consider any convergent sequence {x7} =C with lim x
ke
= x* € C and any convergent sequence {Ek} of nonnegative numbers
with lim € = 0. Then there exists an integer k., such that
Kroo k 0

IR, e ) =I(x*,0), Yk > kg

In particular, all of the limit sets of {J(xk,s )} are contained
in J{x*,0).

Proof. It follows from the continuity of gj, jed that

O’

Va3
there is an € > 0 such that
A
J(x*,0) = J(x*,e), 0 € € € &,

Choose k such that for all k 2 k

0 0° "k

m %

lgj (Xk)"gj (X*), < E‘ s Vj € Jo'

Then for any j € J(Xk,ek), k > ko we have
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>

05 8,G%) > g, ) - [g; x)-g, (0| 3- gy -

Hence j ¢ J(x*,g) = J(x*, 0) which completes the proof.
We are now prepared to prove the main convergence result.

Theorem 2.4.10 (Zoutendijk's method of feasible directions; Pro-

. and gj:D =R > Rl, j € JO be con-

cedure P1) Let £:D €R® > R
tinuously differentiable on the open convex set D and assume
that the constraint set C is both regular and admissible.
Suppose that for xo € C the set Lo(f(xD)) Ac= LO N C is compact,
that £ is hemivariate on LO nC, and that the conditional
critical points of £ on C in LO{] C are isolated. Consider the

iteration (2.4.1) where at xk, g, and sk are chosen by (2.4.8)

k

and Ty by (2.3.7). Then lim xk = x* with x* € Q, where O 4is the
k>0
set of conditional critical points of f on C with nonpositive

multipliers.

Proof. Suppose that xo,...,xk, k > 0 are already well-defined

and contained in LO N € and satisfy (2.3.11) with w = 1 and
cir k-1 _ . k-1~
(2.3.1) with € = €rml and 0 = 0(x ~,J(x ‘,ek_l)). If
O(xk,J(xk,O)) < 0, then, by Theorem 2.4.6, xk e §1; otherwise,
k
o(x ,J(xk,O)) >0 and, by Lemma 2.4.7, O(xk,J(xk,e )) > 0. There-

. k &
fore, with s ¢ K(xk,J(xk,e ),O(xk,J(xk,E ))), we have

(2.4.9) £ (98" 3 1y (06,368,600 > 0, 18] = 1.

Hence, by Theorem 2.3.5, xk+l € Lon C and




t ; 9%
| ;

2.4.10) £ - £y o s 06,065, 50,6

with some F-function & of three variables/dependent only on C

and the steplength aigorithm. Therefore‘e either O(xi,J(xi,O)) €0
for some 1 2 0, and xi € { or, by induction, the entire sequence {xk}
is well~defined, lies in LO N C and satisfies (2.4.9) and (2.4.10)
for each k 2 0. In the latter case, it follows from Lemma 2.1.2

that at least one of the following three limit statements applies:

(2.4.11) 1im £'(xD)s” = 0, lim o(xk,chk,sk>> =0, ling_= 0,
Je>reo koo k>

By comstruction we have lim €k = 0 if and only if 1lim O(xk,J(xk,E )y = 0.
k> ke

Moreover, since U is an F-function on [0,%), (2.4.9) shows that

0
. k k o ko k .
lim O(x ,J(x ,€ )) = 0 whenever 1lim f'(x )s = 0 while Lemma 2.4.8
Tpyoo k k>0

ensures the converse. Therefore, if any one of the relations in

{(2.4.11) holds, all three are valid and in particular

lim G(xk,J(Xk,ek
Leseo

set LO N Cand J

Y) = 0. YNow, {xk} is contained in the compact

0 is finite. Hence {xk} has a limit point x*

in LG 1 C and {J(Xk,ak)} has a limit set J% which, by Lemma 2.4.9

iz contained in J(x*,0). Therefore we may choose a subsequence
k. k. k
{x *} Cf{xk} such that lim x ~ = x*, J(x i’ek
k i i

im 0(x ~,J%) = 0. Then, by Lemma 2.4.4, 0(°,J*) is continuous on

) = J%, wi and

follows from Lemma 2.4.3 that

o(x*,J(x*,0)) < o(x*,J%) = 0,

Thus, by Theorem 2.4.6, x* 1is a conditional critical point of £

on C with nonpositive multipliers. Finally, the induction proof
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also shows that {xk} satisfies (2.3.11) with w = 1 for each
k > 0 and hence that the sequence {xk} is strongly downward on

LO i C. Therefore, since £ is hemivariate on Lo fl C, it

follows from Lemma 2.1.5 that lim ﬂxk—xk+l“ = 0.

koo
the conditional critical points of £ on C in LO{] C are

Hence, since

isolated, Lemma 2.2.6 gives lim xk = x* as desired.
koo
We note that any of the steplength algorithms of Section 2.3

could be used as long as the corresponding hypotheses on £ are

assumed.

2,5 Direction Algorithms

After considering in the preceding section the Zoutendijk
choice of feasible directions, we will now turn to some other methods
for obtaining feasible directions s at x € C. In all cases, s

will be chosen such that f'(x)s > 0 and
(2.5.1) - s £ K(x,J(x,¢€),0)

with suitable ¢ > 0 and € > 0, and more specifically, s will
depend on a certain class of projection matrices., We begin with

a brief survey of relevant results about such projection maﬁrices
without proofs. These results are well-known, and we refer to
Householder [1964] for a general discussion or to Rosen [1960] for
their relations to nonlinear programming.

be continuously differentiable on

Let g :D =R+ RL, § e I,

the open set D and assume that C 1is regular., For any given

x € C, and index set J CIJO, we order the q = IJi vectors g%QX)T, jed
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(1) Pi(x), i=1,...,9 is symmetric and idempotent
(2.5.4) (ii) Pi(x)y = 0 if and only if y € span {nl(x)w.wmiéx}}}9
i=1,...,9

(iii) Pixx) = Pi(X)Pi~l(X> = Pi_l(x)Pi(x), i=1,...,9.

As a direct consequence of (2.5.4) (i) and (ii), we have in

particular
{2.5.5) Pi(x)nk{x) = 0, k= 1,.00,1, 1 = 1,00.,Q
T 2 ,
(2.5.6) v Pi(x)y = ﬂPi(x)yﬁz, vy e Rg, i=1,...,0q.

By the orthogonal projection property of Pi(x) there exist, for

i .
any y € Rn, vectors v ¢ R, 1 = 1,...,q, such that

(2.5.7) v o= (I-Pi(x))y + Pi(x)y = Ni(x)v + Pi(x)y, i=1,.0..9:
Hence

{ Y k= b ! i =

(2.5.8) Pi*l{x)y viPi_l(x)ni(x} + Pi(x)ys i=1,.00,9

and, from (2.5.5) and (2.5.7),

(2.5.9) v= I, N, 1N, @y, 1= L,
Moreover, (2.5.5) together with (2.5.8) imply that
(2.5.10) NPq(x)yﬁz € Hqul(x)yﬁz € vue € ﬂPl(x)yﬁzé il ¥y € R,

Finally, if CO czC is a compact subset of €, then



98
(2.5.11) v, G, @) <k ¥xeCy i= g,
and it follows from (2.5.5) and (2.5.9) Yith y = Pq_l(x)nq(x) that
/2> 0,

{2.5.12) “Pi_l(x)ni(x)" > K_l V:{g;CO, i=1,...,q.

For the special case y = f'(x)T, x ¢ Cand 1 = q in (2.5.9),

we write

Hi

(2.5.13) r(x) = [Nq(x)TNq(x)]'qu(x)Tf'(x)T (rl(x),...,rq(x))T. |

Then Mangasarian [1963] has shown the equivalence of the next result

with the Kuhn~Tucker theorem.

Theorem 2.5.1 Let £:D ©R™ - RY

and gj:D = R" ~ Rl, j € JO be con~-

tinuously differentiable on the open set D and suppose that C

s

s

s regular. Then x* € C is a conditional critical point of f on

C 4if and only if
(2.5.14) P RE )’ =0, q=|3Gx,0].

Moreover, if f is convex, then =x* dis a minimum of f£

cn C if and only if (2.5.14) and
(2.5.15) v r(x*%) <0

hold.
Proof. Suppose that Pq(x*)f'(x*)T = 0. Then it follows from
(2.5.4% (41) that f'(x*)T € span {gg(x*)T, j € J(x*,0)}, and hence

rhat there exist numbers v0¢ vj’ 3 € J(x*,0) not all zero, such that
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Vof'(x*)T + Z V,g!(x*)T = 0,
* jeI(x*,0) I 7

If Yo = 0, then g%(x*}T, j € J(x%,0) would be linearly dependent.
in contradiction of the regularity of C. Hence Vo # 0 and by
(2.2.5) x* dis a conditional critical point of £ on C.

Conversely, if x* dis a conditional critical point of £
on €, then (2.2.5) holds and thus by (2.5.4) (ii)

P (x*)f?{x*)T = Z Vv,P (x*)gf(x*)T = %
b jer(xx,0) 4 ¢ J i=1

oy
V) Fyn . (wk =
qu(x )nl{> ) 0
)
where viy i=1,...,9 is a renumbering of the \3, Hence (2.5.14)
holds at x*. For the last part of the theorem we need to observe

only that if x* dis a conditional critical point of £ on C

rhen Pq(x*)f‘(x*)T = 0 and
. ¥ T ¢ T
NQ(X*)T(X*) = (I~Pq(x*))f (x*)" = £'(x*)

and thus r{x*) simply represents the multipliers \3, i € J(x*,0),
Hence, the result is exactly the Kuhn-Tucker theorem.

It is important to point out that if £ 1is not convex
then (2.5.14) and (2.5.15) together are not, in general, sufficient

for a point x* € C to be a minimum of £ on € although they are

necessary conditions for this. Indeed, since C 1is regular, Lemma 2.2.5

implies that the Ruhn=~Tucker constraint gqualification holds, and hence

the necessity of (2.5.14/15) is a consequence of Theorems 2.2.4 and

2.5.1.
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We now consider the question of how a direction s might be
chosen so that with the steplength élgorithms of Section 2.3, the
iteration converges to points x* € C for~which (2.5.14) holds and
possibly also (2.5{15). As mentioned before, s 1is supposed to
satisfy (2.5.1) for certain positive € and © and in Section 2.4
we saw that the three quantities f'(x)s, € and o have to be
suitably related in order to conclude convergence on the basis of
the estimate (2.3.1). We first discuss the specification of €.
Suppose that £:D cr” -+ Rl and gj:D =R" » Rl, je JO are continuously
differentiable on the open set D and that C 1is regular. If
£ > 0 is the constant of Definition 2.2.1 and x dis any given

point in C, then we use the following procedure for choosing €.

Algorithm for €

(1) 1f “Pq(x)f'(x)T" =0, q = |J(x,0)], set ¢ = 0.
(11i) Otherwise, with fixed isotone F-function ﬁ:[O,m) -+ [0,%)
for which ﬁ(O) = 0 and ﬁ(t) > 0 when t > 0, let
P:[0,2) > [0,%),

upq<x>f'<x>Tu, q= 3,8, if § € [0,E]

{2.5.16) P(s) = _ _
Y(e), if § € [g,»)
and determine € by
(2.5.17) € =-% sup {6 € [0,8] |[{(w(8)) - &6 > 0},

Since C is regular and 'q changes only finitely many times

as ¢ ranges over [0,®), it follows from (2.5.10) that V¥ is a



101

well~defined antitone step~function. We use Lemma 2.4.7 in order

to show that €& is well-defined and positive. Suppose that

m
“?N(x)f“{x)”% >0, g= }5(x30) . Clearly then, by the regularity
of €, W& = Y{0) > 0 for 211l § ¢ [0950] with some 50 > 0 and

Pis) = € for all § € [€,°). Therefore, since Y(0) > 0 and VY is

we see that the defindition (2.5.17) is of the same form as

(2.4.7), and hence, by Lemma 2.4.7 that € dis well-defined and

either € = 0 and x ds a conditional critical

~,

of § on 0 or £ > 0 and P(€) > 0.

We now turn to the question of choosing a suitable direction

s. For notational simplicity and without loss of generality we assume

s
o3
e+
by
-
A
=

% set J(x,€), where € dis now fixed at =x by the

preceding algorithm, that the vector r{x) given by (2.5.13) satisfies

3

(2.5.18) v (x) > (), i=1,...,0°1, q= |7(x,€)

1

means only that at each point =x  the columns of

are suitably ordered. We wnow introduce an integer-valued

L(x,e) = =

!

L otherwise .

=y
[t

O
£

onsider choosing s, for example, by

7 T P W T‘,‘\{v ¢ Vs T
(2.5.20) s = P (x)F' (%) /ﬁPan)f'\x) I 2= Ql(x,e),
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However, then we are only guaranteed that s € K(x,J(x,€),0) which
is not sufficient for‘feasibility. To see this, note first that
if ﬁPq{x)f’(x)Tu =0, q= [J(x,e)f, then,«by the Algorithm for e,
we have € = 0 and x 1is a conditional critical point of £ on

. Otherwise, (2.5.10) implies that
] T 1 T
e, @t > [p e ] > 0, &= 2y (xs0)
and hence s 1is well-defined. From
P ( )f'(x)T € span {n, (x) n (x)}i—
o (x pa 1 sereslly
it follows that
. T .
(2.5.21) ni(x) s=0, i=1,...,8= Qi(x,e)
and for 2 = g~1, (2.5.19) shows that
P @ <2r @l G G, r @ >0, a=|Ix,e)].
g 2 q =17 g g ’ ’
tow, by (2.5.8) and (2.5.13)
(2.5.22) P _@E' )T =1 P - (x)n (x) + P (x)E (x)"
g-1 q q-1 q q
and hence, together with (2.5.5) and (2.5.6),we obtain
n @ = r P @ @R _ @] > 0.
q q q-1 q q-1
Thus, in all cases

ni(x)Ts 2 0,,1i=1,...,9



and, because the vectors ni(x‘)5 i=1,...,q9 are the gradients

(x)", 3 € J(x,e) in a certain order, it follows that indeed

s € K(x,J(x,€),0). As noted before, we require a stronger condi-
tion on s in order to guarantee feasibility as well as the

basic estimate (2.3.1) and, for s defined by (2.5.20), the latter
is precluded by (2.5.21). We note that for the nonlinear case,

Rosen [1961] developed an algorithm which allowed directiomns of

the ferm (2.5.20). However, it was necessary for him to introduce

ien term whenever such directions led away from the constraint
set. Our approach will be to modify the vector s by considering
instead of (2.5.20) normalized vectors of the form Pz(x)p+@ § Bini{x}g

i=1
g = %l{xye} where p is a suitable direction and u,Bi,i = Lyueesd

U

are certain veal numbers. In other words, we add to Pz(x)p some

\ o . ; . , . T .
specified linear combination of the gradients gj(x) , j & J(x,8).
This procedure is similar to one considered by Kalfon, Ribiere,
and Sogno [1968] for projected gradient directioms, that is, for the
case p = f'{(x)". At first, we shall restrict ourselves as well o

adient case and discuss some other cases later.

L n 1 , n 1 . . .
Let f:D «R™ ~ R™ and gjzﬁ R >R, § € J, be continucusly

0
differentiable on the open set D. Let CO < C be a compact subset

I

of the vegular comstraint set € and counsider the following procedure.

Alporithm for =

Ila Let x € CG be given and choose € by the Algovithm for <.
0 1 ﬁngx}fv<X>Lg =0, q = |J3(x,e)|, then the process

{1i) Otherwise, determine 2 = Ql(x,e) and let p = f“{x}fs
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N
0

for which ﬁj(t) # 0 for all t € [0,*), define the vector

IT., With fixed isotone F-functions ﬁjg[O,w) > [0,°), j J

z(x) € Rq, q = ‘J(X,E)I by

- . T . N
uj(f'(x)PQ(x)p), if ni(x) = g%(x) , j €J (x,8)
{(2.5.23) zi(x) = i=1,...,9
0, if n (x) = gg(x)T, j e dlx,9)

and set

(2.5.24) 8 = [Nq<x)TNq(x>]'lz<x>, B = (Bl,...,sq)T.
TII. Choose 0 > 0 by
(L ¢op (=)p/ | % B.£'(x)n, (x) |, if | % B.£' (x)n, (%) |
2 3 LB 1 &0 LBy i
i=1 i=1
(2.5.25) &= > (£ R P2 > 0
-% (f'(x)Pl(x)p)l/z, otherwise
and set

[

' _ g _ 49
(2.5.26) s = [P (0)pta | Byny /P, Gpta | Bin, (O |
~ i=1 i=1

We now discuss the validity of the steps II and III: If
&Pdix}f?{x)Tﬁ =0, q= ]J(X,E)!, then the Algorithm for € dimplies
that ¢ = 0 and hence that x is a conditional critical point of f
on (. Otherwise, £ > 0 and, by (2.5.6) and (2.5.10),
fT{X}PQ(X)p > f’(x)Pq(x)p >0, &= Ql(x,e), and the procedure continues

to step II. For the validity of II we note that by the regularity of

together with £ < €, where e 1is the constant of Definition 2.2.1,



the vectors ni(:x)5 i=1,

are linearly independent.

g

(2.5.27) ) BN (x
=1 * ¢

has a unique solution B =

to IIT we observe that,by

%mvi
LA

.+0+,q and hence also Nq(x)lni(x)3 i 1,...,q

Therefore, the system

z {x)

}1n.(x)
1

{Bwyma,,ﬁqyg namely (2.5.24). Proceeding

(2.5.11) and the continuity of all deriva-

tives,

49
fa e o 5 \ |
(2.5.28) I LB ET(x)n, (x)] £ K
R i 1
1=1
where <, s independent of x € CO" Hence, from (2.5.25) and (2.5.28)

it follows that O is well-defined and positive and that

(2.5.29) &% U(E" ()P, (x)p)

-

4

]

where (&) tl/z} is clearly an F-function. £

N,
Jix,E)

0 and (2.5.26) reduces to (2.5.20):

is well-defined. Otherwise, z(x) # 0 and hence also

B

P10

i=1
fzﬁx}?gix}p > 0 together with (2.5.25) implies that
thus

8 is again well-defined.

is important to note that steps IT and IIT are not depends

on our particular cheoice of p in I,. In other words, these steps

remain well-defined as long as some direction p is chosen for which

> 0 and some appropriate index £ is used which need not

ol

£' (0P, (),

L.{x,gy. We shall present below ceveral examples of
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We note further that the procedure defined here may stop at
2 conditional critical point of £ én C which has at least one
positive multiplier. This corresponds to the well-known possibility
in the unconstrained case that a minimization procedure stops at
a saddlepoint. We shall discuss later a procedure for moving away
from such points so that ultimately we stop only at conditional
critical points of £ on C with nonpositive multipliers.

We return to the Algorithm for s' and show next that there
the directions s have the desired feasibility properties.

1

Theorem 2.5.2 Let £:D =R" > R and gj:D =Rr" > Rl, j e JO be con-

tinuously differentiable on the open set D and assume that C is

regular. Let C0 < C be a compact set and x € C0 a given point which

is not a conditional critical point of £ on C. Then the vector

s € R given by the Algorithm for s is well-defined and satisfies,

~

for L = QI(X,E), s € K(x,J(x,€), f'(x)PQ(x)p) as well as

£l {xYe 3 “0(5'(X)Pl(x)p) for some F-function Mo

Proof. Since x € C0 is not a conditional critical point of ¢
on C, we find that € is well-defined and positive, and that
ff{x}Pz(x}p >0, L= Kl(x,e). Thus, by our previous discussion of the
steps II and III we see that also s is well-defined.

From (2.5.25) it follows that o S'% (f'(x)Pl(x)p)l/Z. Thus,
using (2.5.11), (2.5.24) and the uniform boundedness of f' on CO
we obtailn Npu <K, and

2, p + @ élgiﬂi(X) I <«



f~.—4
<
ed

where KooKy € (0,%) are independent of x ¢ CO' Together with

{2.5.25) and f'(x)PQ(x)p > 0 this leads to

q
[£' )P, (x)pal )
i=1

q
P (x)s Bif'(X)ni(x)]/HPQ(X)P+iZlBini<X>ﬁ

N\

- 4 q
{fﬁ(x>P£<x)p~uiizlsif'<x>ni<x>!]/uP%<x>p+iZlgini<x}g

WV

5 £GP Gop/lr, Dok

1

B, )|

% 1

It t~1.a

A\

__;];__v o R Y
2, f (x}agax/p,

that is, £'{x)s = ua(f'(x)PQ(x)p) > 0 with the F-function “0(t> t-sz T,
~3

Now using (2.5.5) and (2.5.27) we have
T T -4 T -3 N
n (x)7s = [n (x) PR(X>P*“k£lBk“1<X) “k<X)]/ﬂPQ(X>P+“kZIBk“k<X>§
_ _ g
- mzi(x)/”Pz(x)p+ukzlﬁknk(x)“

-l :
3 K, @zi(x)$ i=1,.0058%.

Suppose that & = g-1; then it follows from (2.5.19) that rq(x) > {0 and

hence from (2.5.5) and (2.5.22) that
n (s =[x ®]P . (n (X)NZ +az @) I/|P L (®)pHa ; n, (=) ||
q N q M Tg-1" g BZgtE q-1%/P ukéggk"kaxjw
{2.5.30) s 5z (x).
AN < 3 q
Therefore, by (2.5.23) and (2.5.29)
o4

(s > kT CE G GOPI (1 IRy GORYs 3 e T Grae)

o , N
= uj(f'{x)Pgix}p), e J(x.€)
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where uj(t) = K;lﬂ(t)ﬁj(t), ie JN(x,g) are clearly isotone F-

functions with pj(O) = ﬂ(O) 0. In addition, we have

) L
gS(X)s >0, je I (x,¢)

and hence altogether s € K(x,J(x,e),f'(X)Pz(x)p).
Note that with the help of (2.5.6) we can write the conclusions

of this theorem also in the form

(2.5.31) s & K(x,J(x,e) P (x)f'(x)Tllz),f’ (x)s > “0(“?2 (x)f'(X)THZ),
2 = Q/l(X:E)'

Note further that we used p = f'(x)T only to ensure that
fﬂ(x}?g(x)p > 0 and that s is well-defined; in addition, we needed

the estimate!!p“ < K, with some fixed constant Koy € (0,0) independent

2

of x € CO. Similarly, the properties of § = zl(x,g) defined in
{(2.5.19) were needed only to obtain (2.5.30) in the case & = g-1.
Consegquently, Theorem 2.5.2 will remain valid for any uniformly bounded
choice of p which satisfies f'(x)PQ(x)p > 0 and produces a well~-
defined s, and for any definition of £ which ensures that (2.5.30)
holds if £ = g-1.

In order to discuss a particular generalization of our choice
of p we present first a lemma given by Ortega and Rheinboldt [1970;
Theorem 14.4.17.

Lemma 2.5.3 Let D, &D =R" be any compact subset of D and

0

AﬁDO'* L&Y any continuous mapping such that A(x) is positive definite

for each x € DO' Then there exist constants O <m €My such that



Pk
o
D

(2.5.32)  hiA@) 'h 3 (ny/Inl?, v ey, hoe B

Proof. Evidently, A(x)—l exists and is positive definite

for all x € COaand by the continuity of A on the compact set CG

there clearly exist constants 0 < N1 g Ny such that
fac) | € n,, BEAGDR 3 7 Inl?, wxec, her
- = 93 | H 0° °

Hence, by the Cauchy-Schwarz inequality

[aGOR] > nfnf, ¥x e Gy B e &

and

il

(2.5.33)  |[n] = [AG)AG) R

| > nlﬁjA(xflh}j, WxeCy he r".

Similariv,

< nJa@ ], vxecy, her”

7AN

i

. A ~1
so that with h'= A(x) ~h we see that

v — A A A
wiac) ™ = hrae) T = BAGOR

nia s b n.

w

We return to our intended generalization of the choice of p.

For this we replace step I, in the Algorithm for s by the follow-

1

ing step 12@ As before, CO = is a compact subset of the regular

set C.
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[

I.. Let A:CO > L(Rn) be a continuous mapping such that A(x)
is positive definite for each x € C0 and 0 < Ny 3 n,

the constants of Lemma 2.5.3. Let x € C0 be given and
choose €& by the Algorithm for €. Define the integer-

valued mapping 12, with q = ,JCX,E)I, by
a1, 1 [A@ TP @ @]
(2.5.34) Ay (x,8) <3 »(nl/nz)rq(X)an_l(x)nq(x)B
q, otherwise.

(i) If‘”Pq(x)f'(x)T” =0, q= )J(x,g)], then the process
is terminated.
(ii) Otherwise set p = A(x)—le(x)f'(X)T, L= 2(x,8€).
The next theorem shows that the Algorithm for s with I2
replacing Il produces a well-defined vector s ¢ R" and that s

satisfies a relation similar to (2.5.31).

Theecrem 2.5.4 Let f:D =3 Rl and gj:D =r" »-Rl, j e JO be continuous-

ly differentiable on the open set D and assume that CO <C is a

compact subset of the regular constraint set C. Suppose that x € CO

; s s . n
is not a conditional critical point of £ on C and let s € R be

chosen by the Algorithm for s with I, replaced by I

1 Then s

9
is well-defined and, with % = QQ(X,E},

(2.5.35) s £ R(x,J(x,9, Wﬂﬂ%)ﬂ%(x)f’(xﬁu%,

£'(x)s > uot(ni/ng)ill’l(x)f' @,
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Proof. Since x € CO is not a conditional critical peint of

f on C we see again that € is well-defined and positive and
that ﬂPq(x)f'(x)T” >0, q = |J(x,€)|. Hence, by (2.5.10) and the

positive definiteness of A(x)nl we see that
1 § T T "1 1 T
£1(x)P x)p = (Pg(x)f (%) ") TA(x) Pgﬁx)f x)” >0, 2= 22{X,€)

and therefore that s 1is well-defined.

For the proof of (2.5.35) we first show that

8 £ K(X,J(x,e)gf’(x)PR(x}p). As in Theorem 2.5.2 it follows that

T -1 ,
ni(x) s 2 Ky uzi(x), i=1,0..,8= 22(x3€).

If 2 = g-1, then rq(x) > 0 and, using (2.5.22) and (2.5.32) with

h = (x)nq(x) we have

P
6,60 G = n @R GOAG TR )T
= r (On P @A P n_ (x)
q q q-1 q-1 q
ROk (x)A{x)‘lyq(x)f' R
2
>z @ ol Gon o P
- s e @z, Gon @0

1 2
> 5 7, Gy Ipllp_ o o 1 > o,

Therefore,



nq(x)Ts 2 K_l
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3 [

1 2 . 2 -
5 rq(X)(nl/nz)HPq_l(X)nq(X)" + Gz ()]
-1 -
> Ky azq(x)
and hence (2.5.30) holds. Thus, as in Theorem 2.5.2

s € K(x,(x,),E GIP)P), £ (s > Wy (E' (P GID), L= &, (x,9).

T
Now using (2.5.32) with h = Pz(x)f'(x) we see that

£ (x)P (x)p > (nl/ng){(Pg(X)f’(X)Tﬂz

and hence, by the isotonicity of uo,pj, j e JO that

g%(x)s > uj(f'(X)PQ(x)P)

> g (e, @ @I, 5 e g
and

£1G)s 3 (E @R GOP) 3 g () /M) Py (O ()

Ti2
)
Another choice of the vector »p

Gauss-Southwell algordithm.

®

is given by the well-known
For this we replace step I
rithm for s

with the following procedure.

1 of the Algo-
13. Let x ¢ CO be given and choose € by the Algorithm for €.
Define the integer-valued mapping Q3 by
(2.5.36)

2y(x,8) = q = |itx,0)].




(i) If ﬂPq(x)f’(x)Tﬂ =0, g = fJ(x,E)f, then the
procedure is terminated.
(ii) Otherwise, choose p as the coordinate direction

i .
te”, 1 € 1 € n such that

(e e

= max £ GOP ()], 2= 4,(x,0)
1<ksn
(2.5.37)

& P = sgn (f“(x}PR(x)el)el.

e

We show next that here too the Algorithm for s with 13 replacing

- . n . .
I, produces a well-defined vector s € R* and that again s satis~

fies a relation similar to (2.5.3L).

Theorem 2.5.5 Let £:D @R — Rl and gj:D <= r" » Rl, j € JO be con-

tinuvously differentiable on the open set D and assume that CO = C

is a compact subset of the regular comstraint set C. Suppose that

s E G

0

s ¢ R" be chosen by the Algorithm for s with T

is not a conditional critical point of £ on C and let

replaced by I..
1 "°P 73

Then & is well~defined and, with { = £3(x,€),

(2.5.38) s & K(x,3Gme)on AR e 7,

—1/%

£ s > u e e @ @),

Proof. As before, the fact that =x is not a conditional
critical point of £ on € implies that € > O and “Pq(x)f'{x)Tﬁ > 0,

q = !J(x,€>l¢ Since (2.5.37) is equivalent to
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£1 ()P, p = [B,E @7, L= 2,06) = g

we readily see that

(2.5.39) £'(x)B, (x)p > n’l/zllPQ(xM'(x)TH2 > 0,

2 = 23(x,€) = q

and hence that s 1is well-defined by (2.5.26).

The proof of (2.5.38) is evident since, as in Theorem 2.5.2,

ni(x)*s > Kq azi(x), i= 1,000, = 23(x,€) = q

and hence
s € K(x,J(x,E),f'(X)PQ(X)p),f'(X)s > uo(f'(X)PQ(X)p), L= 2,(x,8)

which, together with (2.5.39) and the isotonicity of uo,uj, je Jg,
yields (2.5.38).

We close this section by indicating how one might proceed if
any of the procedures discussed in this section terminates at a

conditional critical point of f on C with at least one positive

multiplier. Suppose that x € C satisfies

°

ﬂPq<x>f'(x>TH = 0, T, > 0, q = |3Gx,0)

Then it follows from Theorem 2.4.6 that o(x,J(x,0)) > 0 where ¢ is
defined by (2.4.3). Hence the Zoutendijk algorithm (2.4.8) is well~

defined and we may choose a vector

s & R(x,3(x,€),0(x,3(x,£)))
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with € > 0 given by (2.4.7). Clearly then, we obtain
£f'{x)s = UO<O(X,J(X,€))) >0, gg(x}s 20, j¢ JL(X,E),
g} (s > 1, (96, T(x,€)) > 0, 3 € Mx,e).

This means that s dis feasible and that one can take a step in the
direction of -s and obtain s reduced value of £ on C. Hence,
if there are only finitely many conditional critical peints in a
compact subset C0 e ¢, then for minimization methods in which the
iterates are of the form (2.2.6/7) and remain in CO’ we need only

apply the above procedure at most finitely many times.

2.6 Convergence Theorems

In this section we combine the results of the preceding sec-

tions into complete convergence proofs for iterative methods of the

form
(2.6.1) =L o K wkwkgkﬁ FS) 2 £, ko= 0,1,...

for solving the constrained minimization problem. Several new
methods can be generated in this way, and as corollaries of the
basic theovems we also obtain results about variants of the Zouten-—
dijk [1960] method of feasible directions as well as the Rosen
[1960] gradient projection method for linear comstraints.

Before presenting the convergence results we need a lemma

which allows us to conclude that limit points of the sequence (2.6.1)
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are indeed conditional critical points of £ on C.

Lerma 2.6.1 Let £:D =R" - R; and gj:D =r" » Rl, j e JO’ be

continuously differentiable on the open set D and assume that
the constraint set C 1is regular. Let {xk} CZCO be any convergent

, . k .
sequence with lim %~ = x* in a compact subset C0 € C. Furthermore,
k>
let {Ek} be a given sequence of positive numbers such that

1lim e = 0 and suppose that the sequence {”Pi(xk)f'(xk)ﬂ, 9 = Qz(xk,ek)}

koo

is positive and satisfies

Lim |2, £ 9] = o.
koo

Then,
NPq<x*>f'(x*>TM =0, r(x*) <0, q = |JGx*,0)].

Proof. We first note that 2 also depends directly on k
but that we have repressed this dependence to keep the notation less
cumbersome. The regularity of C ensures that there is an open

neighborhood V(x*) of x* € C0 such that

rank Nq(x) =q, q = ,J(x,e)], Wx e V(x*) g C, € in [0,€]

¢
where € is the quantity of Definition 2.2.1; then xk eV(*) N C

for all sufficiently large k > 0. As in Lemma 2.4.9, lim & = 0

koo
ki} has a limit set J* < J(x*,0)
. k,
and we may choose a subsequence {x *} C:{xk} such that x ~
k.,
and J(x 1,8 Y = J% for all i. Furthermore, it follows from

k.
i

implies that the sequence {J(xk,s

e V(x*) | C

v
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k, ‘
(2.5.34) that at each x = we have either & = g* = | %]

or ¥ = q*~1. Hence at least one value %% arises infinitely
often and the subsequence {x i} can be refined such that £ = &%
is fixed for 211 i 2 0. Clearly NQ*(')ZV(X*) N c~ L(RQ*,RH)
and the related operatér PQ*(-):V(x*) nec~> L(Rn’Rn) are

well-defined and continuous. Therefore, we have

ki 1.ci T T
(2.6.2) 0 =1lim|[P, (x DE'(x D) I =lpy e (%) l.
10
Now J% « J(x*,0) implies that &% < g% < q = lJ(x*,O)i and hence,

by (2.5.10), that

(2.6.3) 0« ﬁPq(x*)f“(X*)T“ 2 Gyt Gy T < By, e e | = 0.

q‘k

If 0% = g*-1 g g-1, then evidently also ﬂPqu(x*)f'(x*)Tﬁ = Q and,

using (2.5.5) and (2.5.22) with x = x* we see that
0 =n (x*)TP (x*)f’(x*)T = r (X*)HP (x*) N (X*>H2
q q-1 q Mrg-l q '
Consequently, from (2.5.12) and (2.5.18) it follows indeed that
(2.6.4) 0 =7 (%) > r (%), 1= 1,000,071, q = |3(x*,0)].

On the other hand, if &% = gq* then by (2.5.34) and (2.5.33) with
k. k. T
h = Pq*(x l)f'(x l) we obtain

k.,

k k ky 2,2 ky i\ Ty
x H < z(nz/nl)ﬂl’q*(x YEN(x Y7

(2.6.5) r . (x i)ﬂ?q*_l(x Iyn

q* qfc

But r_, () is continuous on V(x*) 0 CO by the same reasoning as
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used for Pq*(-), and hence (2.5.12) together with (2.6.2) implies that

0 =2 rq*(x*) > ri(x*), i=1,...,q9%1,

Now, it follows from (2.6.3), (2.5.7) with y = f'(x*)T as well as

{2.5.13) that

q q*
T
' (xF = * %) = % *
£ (x*) ‘2 ri(X )ni(x ) .2 ri(x )ni(x )
i=1 i=1
end hence from the linear independence of ni(x*), i=1,...,9

that
ri(X*> =0, 1 = g*1l,...,q9, g% < q.

Consequently, (2.6.4) holds and the proof is complete.
We note that if & = Ql(',‘), then (2.6.5) is satisfied for

31 =N, = 1 and hence Lemma 2.6.1 is also valid for 21 in place

of 22, However, in the case of % = QB(‘,‘) we can only show that

{2.6.3) holds, since the proof of r(x#*) < 0 fails,

4s a direct consequence of Lemma 2.6.1 and Theorem 2.5.1 we
obtain a result which is equivalent to Lemma 2.2.6 and which we
state as a separate corollary.

Corollary 2.6.2 Let £:D <R+ RL

. ¢
and gj:D <r" > Rl, j € JO be

continuously differentiable on a compact subset C0 of the regular

constraint set C and suppose that {xk} C=CO is any sequence which

satisfies



(2.6.6) tim 2 &9 & = 0
ko 9g
where 9y = ijk!> k > 0 for some specific sequence of index sets

{Jk} Cijoa Then the set

}

QY = {X e CO gqu(X)fy(X)Tla = @, q = lJ(X,O)
of conditional critical peoints of £ on € dis not empty and
. . k oy
lim [dinf ||x -x]] = 0.
koo xe()’
In particular, if ' consists of a single point x%, then

(2.6.7) lim xk = x*,ﬂpq(x*)f*(x*)Tﬁ =0, q= IJ(X*,O)ln

T

Note that if ' is finite and lim ﬂxk—xk+ln = 0

)

, then
(2.6.7) holds.

We begin our discussion of convergence results under the
following assumptions which will remain the same without further
mention for the remainder of the section.

. . 1 I 1 .

The functionals £:D R - R~ and gj:D <R R, je€ JO,
are continuously differentiasble on the open convex set D and the
0

constraint set C is regular and admissibie. Moreover, x is

any point in € such that LO i € is compact and that the set
0
Q={xeLl’ gcC ﬂPq(x)f'(x)TH =0, q= |J(x,0)]}

is finite.
We consider the following general class of directions {s*}

for which
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(2.6.8) lim £' (x5)sK = 0
koo

implies (2.6.6).

Definition 2.6.3 Let {xk} < (C be a given sequence and {ek} the

associated sequence determined by the Algorithm for ¢ (Section 2.5).

Then a sequence {sk} CfRn, with sk € K(xk,J(xk,€k), ”Pq (xk)f'(xk)T"),
k

q = lJ(Xk,€k>l for each k > 0 is projected-gradient-related to {xk}

if there exists an F-function HO such that
- vk k k kT k
2.6.9) JeraDs 2 ugdle, O EDD, g = 136780 k=01,
k

We note that if no constraints are present then Definition 2.6.3
reduces to condition (2.1.14) which is precisely the Elkin [1968]
definition of gradient-~related sequences.

The results of Section 2.5 provide us with several examples of
projected-gradient-related directions. Let {xk} C:CO be any sequence
in a compact subset CO of the regular constraint set C and

- IJ(xk,ek)l for all k > 0

suppose that ”P (xk)f'(xk)T" > 0, 9y
G
where € is determined by the Algorithm for €. Then the sequence
{SK} generated by the Algorithm for s dis projected-gradient-
related to {xk} if ¢
. k kT k
1)y p =£f'"x)", &= 21(x ,8), k= 0,1,.

(1) 25 = A9 TR, GOE GO, L= 2,65, k= 0,1,

(1i1) pk is chosen by (2.5.37), & = 23(xk,8k), k=0,1,...
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In (ii) ‘A dis assumed to satisfy_the conditions cf step IZ of the
Algorithm for s. In particular, if £ dis uniformly convex and
twice continuously differentiable, then we may take A = £”. The
validity of these examples follows directly from (2.5.31),
(2.5.35), and (2.5¢38)9 respectively, by noting that, because of
(2.5.10) and the iscotonicity of uo,uj, ie JN, these relations
hold with g vreplacing &.

We now turn to scme complete convergence theorems. The
first result provides for the convergence of projected-gradient-
related methods in general.

Theorem 2.6.4 Consider the iteration (2.6.1) where at xkg

. . k . . .
g, 1is chosen by the Algorithm for €, s ¢ R is any directicn

vector such that, with mk and Ty obtained from any of the step-

length algorithms described by Theorems 2.3.4 through 2.3.7, we

have that xk+l € LO fl C and (2.3.1) holds with ¢ = € and

. Then, if the sequence {sk}

< k .

g = ﬁPq (xk}f'(xl)T@, 9 = 7Gx 26,
k i

is projected-gradient~related to {xk} and  consists of only omne

point x%, it follows that lim xk = x%,
K ke k
Proof. Since {s } is projected-gradient-related to {x '}, we
see that sk £ K{ngj(xkse 3 NP (Xk)f‘(xk)Tﬂ
k 9 f
that (2.6.9) holds, and hemce, by (2.3.1) that

- L
Y, qy = [3Gx,e )] and

(2.6.10) £(x%) - £ 3 a(e' (sK, Iz, e @ e, a = [65e)
k N

with some given F-function @ of three variables dependent only on

C and the steplength algorithm. Therefore, by Lemma 2.1.2, either
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(2.6.11) lim £'(x5)s* = 0 or lim (b3 (xk)f'(xk)T" = 0 or lime, = 0.
Koo ST ’ koo

By construction we have lim €4
Teoroo
while (2.6.9) shows that lim f'(xk)sk = 0 implies that
k kT ke
1im§§?q (x )E'(x )7]] = 0. Hence in any case (2.6.6) holds and, by
e i
Corollary 2.6.2, lim xk = x*,
k% 0 0
Note that if L~ is replaced by L{f(x )) and if L(f(x)) A C is

= 0 if and only if lim]|P (xk)f'(xk)TB =0
ko dk

compact, and {xk} C?L(f(xO)) fl C, then the Goldstein and Goldstein-
Armijo steplength algorithms (Theorems 2.3.9 and 2.3.10) also apply.
On the basis of Theorem 2.6.4 we now give more concrete examples.

Theorem 2.6.5 Consider the iteration (2.6.1) where at xk, Ek is

chosen by the Algorithm for € and sk e R" is obtained by the

Algorithm for s consisting of the steps I

<®k = f“(xk T

"

1> I and III

)

= 1and T be

k
, & = Rl(x ,ek)). Moreover, let Wy K

chosen by (2.3.7) (minimization on Lo(f(xk)) i C). Then the iterates
(2.6.1) are well-defined, except at conditional critical points of
f on C, remain in LO fl C and are strongly downward; and, if f
is also hemivariate on LO fl C, then lig xk = x* with x* € Q.
Proof. Suppose that xo,...,ik,kk 2 0 are already well-defined,

lie in LO(]C, and satisfy (2.3.11) with w = 1, as well as

P _ _ k=1.,, k-1.T (e k-1

{2.3.1) with € = €1 and 0 = "qurl(x YET (% ) ", 9 ‘J(x ’€k~l)]'

1f NPq (xk)f’(xk)T" = 0, 9 = IJ(xk,E )l, then the Algorithm for € shows
-k

that & = 0 and hence that xk £ {l, Otherwise, by Theorem 2.5.2, sk

is well-defined at xk, ”Pl(xk)f'(xk)T“ >0, L= Ql(xk,a ) and (2.5.31)
holds., In particular, (2.:5.31) implies that f'(xk)sk > 0 and, together

with Theorem 2.3.5, that xk+l € LO N C, and satisfies (2.3.11) with



1z3

k kT e KO
(x))f' (%) ﬁ§qk=;dgx vk}

ks
>

W= 1l,as well as (2.3.1) with € = g, and 0 = “P
k qk

‘ k .
Therefore, by induction, either the entire sequence {x"} has these

properties and, by (2.3.11), is strongly downward, or, for some

iz 0, HPq'(xi)f‘(xi)Tn = Q, q; = lJ(XiyO){ and xi € . In the

latter casi we are done; otherwise, (2.5.31) implies that the sequence
{sk} is projected~gradient-related to {xk} and, by (2.3.1) that
(2.6.10) holds. Therefore, as in Theorem 2.6.4 we see that

{(2.6.6) holds and, since f 1is hemivariate on LO il ¢, Lemma 2.1.5

k_Xk+lﬁ

shows that lim Hx = (., Consequently, since the conditional

Temco

critical points of £ on C din LO I C are isolated, Corcllary 2.6.2

1
» fa a «
ensures that lim % = x® with x* ¢ Q.
'k...)oo

Note that with the help of the procedure described at the end
of Section 2.5 we can always move away from conditional critical
points of £ on C in LO i ¢ which have at least one positive
meltiplier. Hence, since we used § = Ql(xkgek) in Theorem 2.6.5
and there are only finitely many conditional critical points of £
on € in LOvﬂ C, it follows from Lemma 2.6.1 that we can always
assure the convergence of {xk} to a conditiomal critical point of £
on C with nonpositive multipliers, that is, to a point which
satisfies the necessary condition for a minimum of £ on C.

Again, any of the steplength algorithms of Section 2.3 can be used

in conjunction with Theovem 2.6.5 provided the appropriate assump-

tions are made about f.
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The proof of Rosen's [1960] gradient projection method for
linear constraints is now a direct consequence of Theorem 2.6.5.

1

Indeed, if gj:D <r" >+ R , j €J, are linear functionals, then

0
the vector z(x) of (2.5.23) is identically zero on C. Hence,

it follows easily that for any xk, which is not a conditional

critical point of £ on C, we have

= 2 e G e T 1= 0 GNe,

and this is precisely the direction choice of Rosen [1960].

The next theorem illustrates some other results of Sections
2.3 and 2.5, and, more specifically, it combines the Gauss-Southwell
directions with the Curry-Altman steplength algorithm.

Theorem 2.6.6 Consider the iteration (2.6.1) where at xk, €

k
is chosen by the Algorithm for € and sk € R is obtained by the

Algorithm for s conmsisting of the steps 13, II, and III

(p" is chosen by (2.5.37) with & = QB(Xk,E }). Moreover, let wk

and T be given by the Curry-Altman steplength algorithm

{Theorem 2.3.4). Then, the iterates (2.6.1) are well-defined

except at conditional critical points of £ on C, remain in
0 X ] ] .
.° n C, and are strongly downward; and, if f is also hemivariate

on LO 1 C, then lim xk = x* with x* € {,
koo @

Proof. Suppose that xO,..‘,xk, k > 0 are already well-defined,

lie in LO n C, and satisfy (2.3.11) with w = W _q> as well as (2.3.1)
k-1 k-1
x X

T
": 1 = = v =
with ¢ €1 and ¢ ”qu_l( YET( ) ", 91 ]J(x ’Ek—l) .
k
If ﬂPq (x )f'(xk)T“ = 0, q = IJ(xk,ek)|, then the Algorithm for ¢
k
shows that € = 0 and hence that xk £ §, Otherwise, by Theorem 2.5.5,

k

v
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Sk is well-defined at xk, ﬂPg(xk)f?(xk)Tﬁ >0, £ = Q (x T,w

and (2.5.38) holds. In particular, (2.5.38) implies that

4 B
13 £y K < P Y ~ -
f'(x s > 0 and, together with the proof of Theorem 2.3.4,
kel 0 . e e o u . -
that x £ L €, and satisfies (2.3.11) with w = Wy as well
. \ . k k. T k |
as (2.3.1) with g = €1 and 0 = H? (YEY (=) Hg q = lJ(x 36%)3,
e o ® L] * 3 k‘
herefore, by inductiom, either the entire sequence {x } has
these properties and, by (2.3.11) is strongly downward, or for

I

., . d i . .
gome 1 » 0, ﬁ“ (x )FE(A ) ﬁ* 0, q, = |J{x iO)[ and x~ € . In the

R
84
are done; otherwise (2.5.38), together with
xgﬁx € Tq, = 1 (x gek) , ensures that {s} is projected-

. . -k
gradient-related to {x } and, by (2.3.1), that (2.6.10) holds.
Therefore, the result follows as in Theorem 2.6.5.

We close this section with a result which generalizes the

damped Newton~SOR theorem of Stepleman [1969] to the constrained

case. Here we shall use the Curry-one-step-Newton method as our

Theovem 2.6.7 GSuppose that in addition to our basic assumptions,

are quasi-

Py
!

is twice continuously differentiable and gj5 jeJd

0

convex. Moreover, assume that £"(x) is positive definite for all

% € 0 and that & contains only one point =x%. Consider

,
L » ‘ ) k . . .
the ijiteration (2.6.1) where at x , € is chosen by the Algorithm

k
= (0,2), et pk = A(Xk)”lPQ(Xk)f$(x<} »

(-% }(D(XK}WwL(xk)), Here D(xkE and
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wi(xk) denote the diagonal and strictly lower triangular parts of
£'"{x), respectively. Suppose that sk ¢ R" is chosen by the Algo-
rithm for s consisting of the steps 12, IT, and III and that
Ty and w, —are given by (2.3.22) and (2.3.23), respectively.

Then, either the iterates (2.6.1) are well-defined, remain in

.40 ; . k . , . e

L nC, and lim x = x* where x* 1s the unique minimizer of
k+w

f on C, or the iteration stops after a finite number of

steps at x*,
Proof. First observe that by the positive definiteness of
£'%{%) for all x ¢ C it follows from the convexity of C

that the only conditional critical point x* of £ on C in

O

L° f C must be the unique minimizer of f on C. Now set

A = (ZHDE@-WLE], x & 10 0 c; then AGx) + AG)T =
{ %‘}D(X)*L(X)“L(X)T = [( %-)—l]D(x) 4+ f"(x). Therefore, since

Q]

(0,2) and hTA(x)h = l-h[A(x)+A(x)T]h, it follows that A(x)
2

. - - . 0
is positive definite for all x in the compact set L™ fj C.

Suppose that XO,...,xk, k » 0, are well-defined, satisfy (2.3.1)

and o =|P (Xk—l)f'(xk_l)T"
-1

* k-1
with ¢ = Ek—l‘ s qk—l = IJ(X ,Ek_l)lr

k
and Lie in 10 pe. I B GO EHT| =0, q = [3Ge],
Q. k
then, by the Algorithm for ¢, € = 0, and by our initial remark
xk = x%, Otherwise, by Theorem 2.5.4, sk is well-defined at

k

%~ and (2.5.35) holds. In particular, (2.5.35) implies that
f”(xk}sk > 0 and, together with the proof of Theorem 2.3.7, that
S0 19 n ¢, and satisfies (2.3.1) with € = e, and

g = ﬂ?q (xk)f'(xk)T", q = |J(xk,€k)!. Therefore, by induction,
k
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. . k ,
either the entire sequence {x } has these properties or, for some

i3 0,2, et e =0, ¢, = [165,0)], x* € 1% n ¢ whicn
i

- i 3 2 ﬁiw
means that x~ = x%, Otherwise, it follows from (2.5.35) that {7}

. : . . k
is projected-gradient-related to {x '} and, by (2.3.1), that
{2.6.10) holds. Hence, by Theorem 2.6.4, lim xk = x*,
koo
We conclude this chapter with the following observation. We

have assumed throughout this chapter that € was regular. This

guaranteed in essence that no degeneracies can occur, that is, that

]

i

there are no polnts in € at which the normals to several con-
straining surfaces are linearly dependent. We only mention that a
methed of handling such degeneracies has been discussed in the

literature (see, for example, Rosen [19601).



CHAPTER III

Numerical Methods for a Class of
Nonlinear Eigenvalue Problems

3,1 Constraint Set Construction

In this chapter we apply several nonlinear programming methods

to solve an eigenvalue problem of the form

Xg'(X)T, xeD, Ae Rl,

(3.1.1) £ (x) "

or its special case

1

(3.1.2) £'(x)" = Mx, x €D, A € R,

with symmetric positive definite A € L(RP).
As indicated in Section 2.1, both these problems correspond

to a nonlinear programming problem of the form

{3.1.3) min {£(x)|x € C}

(3.1.4) c=1{xc¢ Dig(x) = 0} = {x € D|g(x) < 0, -g(x) < 0}.

¢
Unfortunately this set has an empty interior and is not regular.

Hence, before we can utilize the theory of Chapter II, it will be
necessary to show that under suitable assumptions on g, the
constraint set can be modified in such a way that it becomes both

regulary and admissible, and, moreover, such that the solution of

128
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(3.1.3) with the modified set C still solves (3.1.1) or (3.1.2).
Two such choices of the constraint set will be discussed in this
section.

In the next section we analyze a minimization process due to
Goldstein [1967] which differs from the methods discussed in
Chapter II, but for which the constraint set is always a sphere
of fixed radius under some elliptic norm. For (3.1.2) we have
already seen that the constraint set (3.1.4) is exactly of this
form. The remaining three sections of the chapter present a com-
plete algorithm for the numerical computation of branches of solu-
tions of (3.1.1) or (3.1.2), followed by a discussion of our numeri-
cal results for two specific applications. The first example
concerns a problem of nonlinear heat genération in conducting
solids, as analyzed by Joseph [1965], and the second one a problem
of a heavy rotating string as described by Kolodner [1955].

We now turn to two modifications of the constraint set (3.1.4)
which allow ﬁhe application of the techniques of Chapter II to the
problem (3.1.3). 1In the first approach the constraint set is
changed to a set resembling an annulus, while in the second method
a penalty function is added to the functional f so that‘solutions
of (3.1.1) and (3.1.2) can be obtained from (3.1.3) using sets C

of the form

(3.1.5) C={x¢ Dlg(x) £ 0}.
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To consider the first method, let f,g:D cr" - Rl be con-
tinuously differentiable on the open convex set D and choose a
number p < 0 in the range of g. The new constraint set C 1is

then specified as

p- g(x) <0}

(3.1.6) ¢ = {x eDlg;(x) Zgx) <0, g,(x)

where we assume that C satisfies (2.2.3). Then C is

regular if, for example, g'(x)T # 0 for all x € C, since we may

take any number in (O, ~-§ ) as the € of Definition 2.2.1.

Furthermore, C is admissible if it is compact or if (2.2.11)

holds. Under these conditions, together with the relevant assump-

tions on f and on the initial point XO in C, all of the methods

in Sections 2.4/2.6 and their variations apply to (3.1.3) with C

defined by (3.1.6). Since the application of any of these methods

produces a conditional critical point x* of f on C, it follows
1

rhat x* solves (3.1.1) for some X € R ™.

In the special case (3.1.2) we have the constraint functional

(3.1.7) D R >R, gG) =g xAx -5, £> 0

with symmetric, positive definite A ¢ L(R"). The next result

concerns the constraint set C for this case.

1
Theorem 3.1.1 Let D < R” be an open convex set and g:D =r" » R

the functional of (3.1.7) with a symmetric, positive definite matrix
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A€ L(Rp) and some T > 0. If p e [~ £30), then the constraint
set C of (3.1.6) is regular and admissible.

Proof. It follows from the positive definiteness of A
that 0 ¢ C and hence from the nonsingularity of A that g'(x)T
= Ax # 0 for all x ¢ C. Therefore, with € in (O,—-% p) we see
that C is regular. For the admissibility of C observe that
because of the positive definiteness of A the set C dis bounded.
Hence, for any x,vy € C, we have
(3.1.8) 1gi(xj—gi(y)l ¢ sup [ a) Myl < Blx-yll, 1 = 1,25

xeC

that is, (2.2.11) holds and Lemma 2.2.7 gives the desired result.

Note that it suffices to assume only the nonsingularity of
A€ L(Rn), provided that C 1is bounded, since the regularity of
C is then trivial and the admissibility follows from (3.1.8).

The use of the constraint set (3.1.6) requires that the
iterates generated by the minimization process remain in an
annulus—shapéd domain. This has the disadvantage that if a solu-
tion is on the "opposite side" from the initial point then the
iterates cannot cross over directly but have to find their way
to the other side inside the annulus-shaped set. A different
approach to the solution of (3.1.1) or (3.1.2) which eliminates
this disadvantage, but which may increase the occurrence of round-
off errors, is to eliminate one of the constraints of (3.1.6)

by introducing a penalty function.



132

Zangwill [1967] showed that such penalty functions allow the
transformation of a convex programming problem into a single un-
constrained minimization problem. Under different assumptions on
the functionals involved we shall use a similar approach for
solving (3.1.1) and (3.1.2). Let f,g:D cr” » Rl be continuous
on the open convex set D, and suppose that C is given by (3.1.5),

and that for some o £ (0,%)
(3.1.9) lfx)] € o, ¥x e cC.

Now choose a number p < 0 and a point xO € C such that

(3.1.10) g(xo) >§

and set

(.11 F= ()t £ED).
o

Finally, define the functional

(3.1.12) h:D <R > &Y, h(x) = £(x) + N(min {g(x)- -g— , 0h?

and consider the new minimization problem
(3.1.13) min {h(x)|x e C}.

The next result relates solutions of (3.1.13) to those of
{3.1.1) and (3.1.2).

Theorem 3.1.2 ZLet f,g:D c R" » Rl be continuously differentiable

v

on the open convex set D and, with € defined by (3.1.5), suppose
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that f satisfies (3.1.9). TFor any xo € C, such that (3.1.10)

holds, let N be given by (3.1.11). Then the functional h of

(3.1.12) is continuously differentiable on D and

Lo(h(xo)) CILO(f(xO)). Moreover, any solution x* of (3.1.13)

lies in the set {x € Dlp < g(x) € 0} and solves (3.1.1) for some
1

real number A € R™.

Proof. By construction we have for any x € D

£ (x) T, if g(x) -25 0
(3.1.14) h'(x)" =

£ + 25~ £)g' 7, otherwise;

and, in particular, h 1is continuously differentiable on D.
Clearly (3.1.10) and (3.1.12) imply that h(xo) = f(xo) as well as

f(x) ¢ h(x) for all x ¢ D, and hence that
F(x) < h(x) < hx") = £, x e LOh(x"))

or X € L(f(xo)). By definition Lo(h(xo)) is the connected
component of L(h(xo)) containing XO and the curve in Lo(h(xg))
connecting xO and x must also lie in L(f(xo)). Therefore, we
have shown that in fact x ¢ Lo(f(xo)) and hence, that
L2me") e1f¢:").
Suppose that x* solves (3.1.13) and that w is any other point

of C such that g(w) < p. Then it follows that

gw) -

]

0o

2<
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and hence by (3.1.10) and (3.1.12) that

‘ 2
() = £G) + e~ )% > £ + 1
0 - 2 0
= £(w) —f(x)+n——§:—+ £(x")

\%

0, , = o 0
o - E(x) N+ £(x)

f(xo) = h(xo) > h(x*),

i

for any w for which g(w) < p. Therefore, if g(x%*) < p, then
hix®) > h(xo) > h{x*) which is a contradiction. Hence, since
x* ¢ C, we have p < g(x*) < O.

Finally, since x* solves (3.1.13), it follows that x* is

a conditional critical point of h on C and hence that

]

hg{x*)T Xg'(x*)T for some X\ € Rl. Thus, by (3.1.14) we see that

T

£ (x%) kg'(x*)T where

]

‘X, if g(x*) —-g >0

X - ZH(g(x*)*-g), otherwise.

If C is both regular and admissible, we can how apply the
results of Chapter II in order to solve (3.1.13) and thereby
obtain solutions of (3.1.1) and (3.1.2). For the special case
{3.1.2), Theorem 3.1.2 immediately applies with g defined by
{3.1.7) and, clearly, the constraint set C of (3.1.5) is regular

and admissible. In the geperal case, note that if Lo(f(xo)) Nc
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is compact then so is Lo(h(xo)) n C and, since the conditional
critical points of h on C are also conditional critical

points of f on  C, it follows that if those belonging to £

are isolated, then so are those belonging to h. However, before
applying any particular method of Chapter II to (3.1.13), we must
still ascertain whether certain properties previously assumed only
for f may now also be required of g due to its presence in

(3.1.12).

3.2 The Goldstein Algorithm

In the previous section we considered two ways of choosing
the constraint set so that the results of Chapter II are applicable,
We now discuss a method of Goldstein [1967] which works directly
with spheres as constraint sets and which overcomes some of the
difficulties inherent in the techniques of Section 3.1. At the
same time this method appears to have a considerably smaller
range of applicability.

Let A € L(Rp) be symmetric and positive definite, and denote

/2

by ”XHA = (xTAx)l the corresponding elliptic norm on R". TFor

ease of notation we will present the results of this section in

terms of the unit ball §A(0,1) ={y e R" "y“A < 1}; the generalization
to a ball §A(O,D) with any radius P > 0 is evident.

Now consider the eigenvalue problem

(3.2.1) £1(x)T = Mx, x € 5,00,1), X ¢ gl



136
and the associated minimization problem
(3.2.2) min {£(x) [x € 5,(0,1)}.

Then the Goldstein algorithm has the basic form

xk - T A—lf'(xk)T
k+1 k
be = " = =) T s, k=0,1,...
~T '
x -TAf x) Ik
with some suitable choice of parameter Tk' We introduce the mapping
(3.2.3) nR™ > R, hGo = a7 @ R - @ on

Since, evidently

-1/2 T.T l/2x)2,

he) = Y2 DT 260 ()T - (a2 ()T A

it follows from the Cauchy-Schwarz inequality that h(x) > 0 whenever

x € éA(O,l) and that any root of the equation
<
h(x) = 0, x € SA(O,l)

solves (3.2.1) with some A € Rl. With

X - tA_lf'(x)T
”x—tAflf'(x)le

@
(3.2.4) x(t) = X € SA(O,l), t 2 Q
this leads us to consider estimates of the form

(3.2.5) f(x) - £(x(T)) > U(h®))

involving some F-function U:[0,®) -+ [0,*) as well as a suitable

parameter T.
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Let XO € SA(O,l) be an initial point and specify a general
step of the iterative algorithm as follows:
At the iterate x € L(f(xo)) f SA(O,l), set 00 =0 if hx) = 0,

and otherwise, let o € [0,%) be the smallest number which satisfies
(3.2.6) le'(x}(x—X(@)) € f(x) - £(x(®)) < sz'(X)(x-X(&)),

with fixed numbers 0 < Cl < CZ < 1. Then the next iterate x(T) is

given by (3.2.4) with
(3.2.7) T = min {0,347 G0 D7

For the case A = I, a convergence theorem for this algorithm
was stated by Goldstein [1967]. Unfortunately, his proof appears
to be incomplete, and we proﬁide next a corrected convergence result.
As a first step, the following theorem establishes the validity of
the basic inequality (3.2.5).

Theorem 3.2.1 Assume that f£:R" *‘Rl is continuously differentiable

and for any x € L(f(xo)) fi éA(O,l), let T be given by (3.2.7}.
Then x(T) given by (3.2.4) satisfies x(7T) € L(f(x)) 0 éA(O,l) and
moreover (3.2.5) holds with some F-function U independent of x
and T.

Proof. If h(x) = 0, then T = 0 and the result is trivial.
Therefore assume that h(x) > 0. Then, with the abbreviations

v = f'(x)x and

2
(3.2.8) B(1) = (1 + RT y1/2

) ,
(1-v1)2
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it follows that

1/2
1 - -l @, = 1 - (2ve e @ 2

1/2

1 - [(-vD)%+t2h(x)]

1 - (1-vD)B(T) = T(uB(T) + =B

(3.2.9) =

and hence that

£ () (e (1) = £1 G T (0 T (=™ o T ) M-t e G0 T

(a7 6o T 2-veopcn + 2By e o T

L3
RS
[
<
N
i

T G+ (1-()-vEE D - 0 T
Now, by (3.2.7), we obtain that

2 -1 T -1 T -1 T 4
Tl - AT @, < flxa T ) ly c1+da @, <3

Wi

and, since VT € , that

2.2
h(x)T G

2 a7 )
<
(1~v1)2 (l—\)T)2

ES

1
I

A3
Therefore, expanding B(T) as an alternating series we see that

1 hx) ™

(3.2.11) 1<em)<1+5( 24%
1-VT)

and, using (3.2.10), that
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£ (o) (ex(D) > 1Ih G+ (1 (o) |v[EEDY (2

2 2
> = th(x)[1- —%F 7 - _vfx 2]
2{1-v1) 2(1-vT)

~w

(3.2.12) z = Thx).

oW

Consider the functional

(/l £ =0

(3.2.13) W(E) =<

i

EE-E&EN/E" &) x-xE€))), & ¢ (0,(3”:%_1?{"‘1‘8

Since h(x) > 0, it follows from the continuity of f' together with

1 -1

(3.2.12) that ¥ is continuous on (0,(3HA— f'(x)T“ 1. Thus, an

A

application of L'Hospital's rule shows that lim P(£) = 1 and hence
-1 T, 519

that ¥ is continuous on [O,(3”A £ (x) nA) 1. If

T =0 < (3”A_lf'(x)TBA)"l < o, then it follows directly from (3.2.6)

that P(T) > Cl. Hence assume that Y(T) < Cl and therefore necessarily

that T = (BHA_lf'(x)TnA)—l < o, By continuity U takes on all values
between Cl and 1 on [0,T) and hence there exists an a e (0,1} such
that Cl < Y@) < Cz. Thus, O satisfies (3.2.6) and 0 < T < o which

contradicts the assumption that o is the smallest number in [0,=)

for which (3.2.6) holds. Therefore, in all cases U (T) > Cl’ and

consequently, it follows from (3.2.12) that
£x) - £(x(1)) = V(IE" (%) (x-x(1))

(3.2.14) > %Clh(x)"r.
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To obtain the final estimate (3.2.5) we still require an
estimate on ”x—x(T)"A. By (3.2.9) and (3.2.12) it is easily seen

that

“x—x(T)"i = 2(1—XTAX(T)) = 2(1 - lsz T
[|x=TA £ (%) "A
- o1 . o B8(D-1
=20 -y = 20
2
< 2(B8(D)-1) < 55511—2
(1~v1)
‘<%Mm¥
and hence that
(3.2.15) x-x() ||, < —2— n) 2.

Suppose that T = a. If w denotes the modulus of continuity of
-1 -
AA“f“T on SA(O,l) and n the corresponding isotome function of (2.1.15),

then we see that
f(x) - £(x(1)) 2 £'®) x-x(1)) - nx—X(T)"&ﬂ(”X—X(T)"A).
Thus, by the isotonicity of 1, (3.2.6), and (3.2.15), it follows that

/2

2,67 () (e (D) > £1G) Gx (D) - 5 B0 MG n@ !/,

and, by (3.2.12), that

3

3 h(x)l/ZTﬁ(% ne) 2 >2 (12 )neoT.



Hence,

(3.2.16) T z-% h(x)_llzﬁ_lG%(I—Cz)h(x)l/z)

with any strictly isotone F-function ﬁ:[O,w) + [0,%) such that
TORE n(t), for all t > 0, and therefore that ﬁ—l exists and is
a strictly isotone F-function.
. “Loy o Ty o -1 :
On the other hand, if T = (3“A £f'(x) "A) < g, then it
follows from the continuity of f' and the compactness of
SA(O,l) that there is a constant K € (0,%) such that T > K.

Therefore, (3.2.14) and (3.2.16) together show that

(3.2.17) f(x) - £(x(D) > U(h(x))

2 1/2a-1,1
,":-3' t / N (%'(l—C:Z)tl/z)}

is evidently an F-function. Finally, (3.2.4) and (3.2.17) ensure

where u:[0,®) - [0,%), u(t) = %-Cl min{Kt

that x(T) € L(EG)) 0 §,(0,1).

Our algorithm so far does not specify how the parameter T
obtained. Oné possibility for this is provided by the following
procedure of Goldstein [1967] (see also Armijo [1966]).

Goldstein-Armijo Algorithm: Let U be a fixed F-function

and Cl e (0,1) as well as y > 1 given constants. Further, lét
O [
x e L(E(X)) p SA(O,l).
I. If h(x) =0, set T = 0, otherwise let T' > 0 be any
real number such that

(3HA'1f’(x)THA)'1 > 1 2 Uh(x)).
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I1. 1If
(3.2.18) £(x) - £(x(t")) > le'(x)(x—x(T'))

let w = 1; otherwise determine w as the largest

number in the sequence {Y_J} such that

e o]
j=1

(3,2.19) f(x) - £(x(wt")) = clf'(x)(x-x(wT'))3

and then set T = wrt'.

Theorem 3.2.2 Assume that £:R" - Rl is continuously differentiable.

Tor any % € L(f(xO)) N éA(O,l) let T be selected by the Goldstein-
Armijo algorithm. Then x(1) e L(f(x)) n éA(O,l) and (3.2.5) holds
with some F-function Y independent of x and T.

Proof. If h(x) = 0, then T = 0 and the result is again trivial;

hence assume that h(x) > 0. If (3.2.18) holds, then by (3.2.12),
(3.2.20) £(x) - £(x(1")) z% LhGT 3 % L hE@IGE).

¢n the other hand, if (3.2.19) applies, then by the definition of

w we have YT € T S(SHAflf'(x)TuA)_l and

A

(3.2.21) £(x) - £x(yD) < ;') x-x(yD).

Hence, the functional 1§ of (3.2.13) is continuous on [0,YT] and
takes on all values between Cl and 1 on [0,YT). Consequently,
there exists an o e (0,YT) such that Py = Cl and hence, by

{(3.2.14) and (3.2.16), that
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vt > &3 20 A Ga-rr@ ),
and that

() - £G(D)3 § T

l/ZA 1

C
(3.2.22) 7 b A G preo

Thus, (3.2.20) and (3.2.22) together show that (3.2.5) holds with

1/2‘ ( (1 ;1)t1/2)}. Finally, (3.2.4)

ue) =g min{— tu(t),-—; t
and (3.2.5) together show that x(T) € L(£(x)) n éA(O,l).

In Theoreﬁs 3.2.1 and 3.2.2 the parameter T cannot be
interpreted as a steplength in the sense of Chapter II since
"X-X(T)“A # 7. The next result shows that under a slightly stronger
assumption on f we need not compute T at each step but can

choose it instead as a fixed constant.

Theorem 3.2.3 Assume that f£:R© - R1 is continuously differentiable

and that

-1 T ~1_,, T e
(3.2.23) A8 @A T, < Elxyll,, Yy € 5,00,1).
Given the set L(f(xo)) n éA(O,l) let T be defined by

(3.2.24) T = min{ == , 7f£}

w
B
gy

where Kl € (0,9 is such that

T“A <k, Vxe éA(O,l).

o™ o 3
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Then x(T) € L(Ex)) SA(O,l) and (3.2.5) holds for some F-function
1 independent of x and T.
Proof. If h(x) = 0, then the result is trivial; therefore,

assume that h(x) > 0. Because of (3.2.23) we have
(3.2.25) £(x) - £(x(1)) » £'(x) (x-x(1)) - %ﬁ”X‘X(T)“i:

and, since T € (BKl)-l < (3”A—lf'(x)T“A)-l, it follows from (3.2.12)

and (3.2.15) that (3.2.25) can be continued to

£Gx) - £Ge(T)) 32 Th(x) - 3 ETh(x)

oolw

= = Th(x) (1-3&71).

oofw

Therefore, by (3.2.24) we see that (3.2.5) holds with

. 1 1
H(t) = §g~m1n {gz— > G
1

(1) & LE(x)) N §A(O,l)‘

}t and, again, (3.2.4) and (3.2.5) imply that

Until now we have discussed three ways of choosing values
of T for which estimates of the form (3.2.5) are valid. As indi-
cated before, this particular estimate is cruclal in proving con-
vergence of the iterative process. Following is a convergence theorem
covering all three choices of T. he

Theorem 3.2.4 Assume that f£:R° - Rl is continuously differentiable

L}
and let XO € SA(O,l) be any point such that the set
O £
9=y e L(£(x)) n 5,0, |n(y) = 0}

is finite. Consider the iteration
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(3.2.26) L . xk(Tk), k=0,1,...

where at xk, either
(i) Tk is chosen by (3.2.7), or

(ii) T is selected by the Goldstein-Armijo algorithm or,

if £ also satisfies (3.2.23),

(iii) Ty is chosen by (3.2.24).

Then {xk} C:L(f(xo)) n éA(O,l) and lim xk = x* ¢ Q3 that is, x*

koo

solves (3.2.1).
' 0 1 k
Proof. Suppose that x ,Xx ,...,Xx , k > 0O have already been
.
obtained and lie in the set L(f(xo)) n SA(O,l). If h(xk) = 0, then

xk € § and the iteration stops. Otherwise, h(xk) > 0 and

Theorem 3.2.1, 3.2.2 or 3.2.3, regspectively, shows that
(3.2.27) £ - £ 3 uh &)

with some F-function 1y independent of xk and Ty Moreover, by

(3.2.15), we have

< é_h(xk)l/ZT

(3.2.28) I - Y|, < 3

A x
Therefore, xk+l £ L(f(xo)) n éA(O,l) and by induction either the
entire sequence {xk} satisfies (3.2.27) and (3.2.28) and lies in
L(f(xo)) n éA(O,l) or for some i > O, h(xi) = 0, In the %atter case
' xi £  and otherwise, by Lemma 2.1.2, iim h(xk) = 0. Since f' is
00

continuous, the same holds for h and hence limit points of {xk}

must be contained in §. Moreover, (3.2.28) shows that
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lim ka - xk+l|k= 0 and, therefore, since § is finite and
k A . .
L{f(xo}) n SA(O,l) is compact, that lim xk = x* € {0,

k—)oo

3.3 A Complete Algorithm

In this section we incorporate the methods discussed so far

nto a complete algorithm for the numerical solution of nonlinear

ot

eigenvalue problems in R". This algorithm will then by applied to
two particular problems considered by Joseph [1965] and Kolodner
[1955], namely, an eigenvalue problem arising in the theory of
nonlinear heat generation in conducting solids and another one
concerning the movement of a heavy rotating string.

As before, we consider the eigenvalue problem

(3.3.1) £t = g’ 7T, xeD, A e R

as well as its special case

(3.3.2) £1()Y = Mx, x e D, A e R

. n 1 . . n
where f,g:D C€R -+ R are given functionals and A € L(R").
All of the methods discussed in the previous sections were
A

guaranteed to converge to solutions of (3.3.1) or (3.3.2), respec-
tively., However, as with most minimization processes, the rate of
convergence is, in general, only linear. Thus, it is desirable to
terminate the minimization algorithm once it has come sufficiently
close to the solution and to use a faster, locally convergent process

such as the quadratically cbnvergent Newton method for the final phase.
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In general, it is of little interest to obtain only a single
solution of (3.3.1) or (3.3.2). However, once such a soclution has
been computed, the continuation idea of Chapter I can be used to
obtain an entire branch of solutions through it. For this we
solve numerically the initial value problem for the ordinary
differential equation describing this branch. This can be done
by means of any suitable discrete-variable method such as a
Runge-Kutta method and a predictor-corrector method. In summary
then our compleﬁe algorithm consists of the following major parts:

(i) Use of either a minimization process of the form
described in Chapter II with a constraint set of the type given
in Section 3.1 or of the Goldstein type process with fixed para-
meter 1T of Section 3.2. This procedure is terminated if
”f'(x)T - Ag'(x)T”°° and the distance between successive iterates
are less than some given tolerance.

(ii) Use of Newton's method to obtain a solution of (3.3.1)
or (3.3.2), respectively, to the desired accuracy. The termination
criteria is the same as under (i).

(iii) Use of the standard fourth-order Runge~Kutta method as
a starter for a fourth-order predictor~corrector method to obtain
complete branches of solutions ©f (3.3.1) or (3.3.2), respectively.

For the computations described in the following sections we
have implemented part (i) by using a constraint set of the form
(3.1.6) and a minimization algorithm of the form (2.6.1) consisting

of the Algorithm for s with steps I.,II, and III, and the Curry [1944]

l’
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algorithm, as discussed in Sections 2.5 and 2.3, respectively.
This particular choice was used only for ease of implementation;
any other combination of methods developed in Chapter II could
have been used as well. For comparison purposes we have also
used a Goldstein-type procedure with fixed parameter T.

In order to guarantee the applicability of Newton's method
in part (ii) of the algorithm, we still need to discuss the local
convergence of that process in the case of our particular problem.
The following basic Newton Attraction Theorem can be found, for
example, in Ortega and Rheinboldt [1970]; Theorem 10.2.2].

Theorem 3.3.1 Assume that H:D o jY ~ Rn is G-differentiable on an

open neighborhood S. €D of a point y* € D for which Hy* = 0, and

0
that H' 4is continuous at y* and H'(y*) is nonsingular. Then

0
there 1s a neighborhood S © D such that for any y € S the Newton

iterates

k+1 k ko-1_ k
y =y -H'(y) Hy , k = 0,1,...

converges to y*. If, in addition, there is a constant Y < « such

that
la'-u' ool < Ay-y+l. Wy € s,

then the order of convergence is at least quadratic. In order to

apply this theorem to the nonlinear eigenvalue problem (3.3.1), let

& > 0 be a given number and define the operator
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ORI

Il - €

(3.3.3) H:D x R- cR% > g uix, ) =

Then we obtain the following convergence result.

Theorem 3.3.2 Let £,g:D =R + Rl be twice F-differentiable on the

open neighborhood S, ©D of a point x* € D for which there is a

0
number A* ¢ Rl such that H(x*,\*) = 0 with the operator H of

(3.3.3). Moreover, suppose that £f" and g" are continuous at

x* and that [f"(x*)—k*g"(x*)]_l exists and satisfies
o ) T 17 1 K "'1 1 T
(3.3.4) 8% = 2x* [£" (x*)-A*g" (x*)] “g'(x*)" # 0.

Then there is a neighborhood S x A <D x Rl of (x*,)*) such that,

for any (xO,XO) £ S x A, the Newton iterates

k+1

xk+l,X

(3.3.5) (

converge to (x*,A%)., 1If, in addition, g'" is bounded on S, and

0

the estimates

fenGo-£" ) ) < vyl
s Vx e SO
fe" ) -g" )l < vollx-xx]

hold, then the order of convergence is at least quadratic.
Proof. On the basis of the assumptions about £ and g it
follows by direct computation that H is G-differentiable on

S0 X Rl and that

y = &5 - m A TmEE S, ko= 0,1,
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) - Ag"m) - ()
1 » 1
H' (x,)) = s, x€S., AeR

0

2x i 0

Moreover, the F-differentiability of g' on SO implies that g'
is continuous at x* and hence, from the continuity of £" and g"
at %%, we see that H' is continuous at (x*,)%).

Since [f”(x*)-x*g"(x*)]—l exists and (3.3.4) holds, it is

easily verified that

3 7] n
B, B, B, € LR
o -1 1 1
{\3‘«3«6) H'(X*,)\*) = '—8_*_ [} B2 € L(R ,Rn)
B 1 B. & LG&RL,RYD)
3 3 ’
. 4
where
7] 1" -1
Bl = SR[F" (x*)-Akg'" (x*) ]
_2E" (xR A" (x%) ] hgt () T T £ em) -hg () ]
I 1" -1 H T
B, = [£"GeR)-M*g" (x%)] g’ (x%) .
and
B, = —2x* T [ (k) <axg" (x%) ] L.

Now it follows directly from Theorem 3.3.1 that there is a neighborhood

§x A obD X R1 of (x*,\*) such that for any (xo,ko) £ 8§ x A, the



151

iterates (3.3.5) converge to (x¥*,A%),
For the last part of the theorem we see that, for any

(x,1) €8, % A

“ H' (x 9)\)__HV (x% , }\*)‘ "l

£ () £ (*) %" (x%) -Ag" (x) g (x%) T-g" (x)"

2(x—x*)T 0

il
,}mﬂ-—vl

A

£ o) -£" Gy kg™ k) -2g" (o) Il

+ 2”X~X*Hl + ”g'(X*)T—g'(x)THl

IN

e Goy-en@o | + ale" o) -g" ) |

+lgnolly x| + 1" GonTog? Go Tl + 2wonr ]

m

(yl+Y2A*+supHg"(x)"l+2)Hx—x*“l

xESO

+ sup “g"(x)"llk—k*l.

xESO

Hence, under any norm in Rn+l, there exists a Y € (0,®) such that
lar G, -1 G | < A -G |, W @) e sy x A,

and, by Theorem 3.3.1, the rate of convergence is at least quadratic.
The condition (3.3.4) corresponds to a requirement used by

Anselone and Rall [1964] in the case of the linear eigenvalue problem.
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As a direct corollary of Theorem 3.3.2, we can also phrase the
following convergence result for (3.3.2).

Corollary 3.3.3 Let A E L(Rp) be symmetric and positive definite

and & ~ 0 a given real number. Assume that £:D c R" *—Rl is twice
differentiable on an open neighborhood SO <D of a point x* €D
fo1 which there is a number A* such that H(x*,)*) = 0 where H

is now the operator

£1(x)T - Mx
1 n+l

(3.3.7)  H:D xR- < Rt - r™ A, W) =
xTAx - £

Moreover, suppose that f£" is continuous at x* and, that

{f”(x*}NA*A]—l exists and satisfies
T 1" -1
8% = 2(Ax*) " [f"(x*)- *A] “Ax* # 0.

Then there is a neighborhood S X A e D X Rl of (x*,)*) such that
for any (XO,XO) €8 X A, the Newton iteration (3.3.5) with H
given by (3.3.7) converges to (x*,\*)., If, in addition, for some

v, € (0,%)

ﬂf”(x)—f"(x*)|]€ Yl”x-x*|L Vx € SO’

then the convergence is at least quadratic.
Finally, we turn to part (iii) of the complete algorithm.

Following a suggestion of Pimbley [1969] we solve the n-dimensional

initial value problem
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(3.3.8) = " @1 @, xO8) = x,

Ak - 0 € A€ A% 4 O

The next result, which relates solutions of (3.3.8) to (3.3.1),
is based on the well-known Peano Existence Theorem (see, for
example, Hartman [1964]).

Theorem 3.3.4 For given f£,g:D cr® *‘Rl, let x* € int(D), M ¢€ Rl

be a solutiocn of (3.3.1). Suppose that f and g are twice
continuously differentiable in some neighborhood S <D of x*
and that [f"(x*)—l*g”(x*)]_l exists. Then there is an interval
[Me—a, M+0] with ® > 0 on which (3.3.8) possesses a unique con-

tinuous solution x = x(A) which satisfies

£ xONT = ag' ONT, A e [F-a, \e+al.

Proof. By the continuity of £"(x) - Ag'"(x) on S X Rl

and the existence of [f"(x*)—%*g"(x*}]_l it follows that there is
a compact neighborhood V © S X Rl of (x*%,)A*) in which
[f”(x)-%g"(x)]_lg'(x)T is well-defined, continuous and bounded.
Hence, by the Peano Existence Theorem, there is an oy > 0 such
that (3.3.8) possesses at least one solution x = x()\) on the

interval [A*—al,K*+al].

From (3.3.8) we see that for this solution x(}),

dx(\)

£ ONER = granT + g ) ER

di
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and hence that
(3.3.9) 55 (F'x(0)) = 55 Og'xOD)), A e Dit-ay a1

Since x(A*) = x* and (x*,)\*) solves (3.3.1), we may integrate

{3.3.9) over [X*,2\], A € \* + oy and obtain

£ GONT = 2 GONT, A e DiE, 1.

A similar argument shows that this relation also holds on
[A*“algk*] and hence that (x{(}),})) solves (3.3.1) for

Aoe [X*—al,k*+a1]. But by Theorem 1.2.21, there is a proper
continuous branch of solutions x(°) of (3.3.1) which is unique
on some interval [A*-q ,X*+a2], a, > 0, and hence, x(*) must
coincide with x(+) on [A*—a, \*+q] with g = min{ul,GQ}.

Note that, if A e L(R") is symmetric and positive definite
and 1f (x*,2*) solves (3.3.2) with nonsingular (£"(x*)-X*A),
then Theorem 3.3.4 can be applied to (3.3.8) with g'(x)T = Ax.
Thus, in this case, the solution x = x(k),!k —%*l £ o, forms a
unique proper continuous branch of solutioms of (3.3.2).

A Y

3.4 Nonlinear Heat Generation in Conducting Solids

Joseph [1965] considered a problem of nonlinear heat genera-
tion in a conducting plate, and we begin with a brief description of
his results. An electrical current is flowing through an infinite

conducting plate (see Fig. 1) of finite width.

v
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At
(0,1) top ~
_current o (0,0) width
(0,-1) v
2 bottom
Fig. 1

In dimensionless coordinates, let the plate be specified by the
set {(y,t) € Rzl—l <t <1}, It is assumed that the top and
bottom surfaces of the plate are kept at equal and constant tem-
peratures and that the thermal conductivity is constant. If the
heat generation is assumed to be equal to the electrical power

dissipation, then the governing differential equation is given by
(3.4.1) ~u" = yE(u), u(l) = u(-1) = 0.

Here M 1is proportional to the square of the current, u = u(t)
is the dimensionless temperature difference between t and the
wall, and f is a temperature dependent function.

Consider the case when the nonlinear function f:[O,w) - [0,)
is isotone on [0,x). Then a result of Joseph [1965] is that there
is some critical value U such that steady state solutions of
(3.4.1) do not exist for u > Moo while for u < po, (3.4.1) has both

stable and unstable solutions. Furthermore, by symmetry, any solution
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assumes its maximum W oax along the center of the plate. In

particular, for
(3.4.2) F:[0,0) » [0,0), F(u) = e°

and

=, = _ =z _ ] 2
f,[o,oo> -> [0900): f(u> e fm(u) = 1+ u-t 521—1

+...+ 8§ um,
il

8, 2 Oa is= 29'~°sma

golutions of (3.4.1) exist but are difficult to obtain analytically.

On the other hand, for
(3.6.3)  F:[0,2) > [0,@), E(w) = £,() = 1+ u + 52u2, 5, = -195

Joseph [1965] displayed an analytical solution for U in terms
of U, and he noted that in this case Mg = 1.28. Moreover, he

derived the bounds

118
5 2 2 -1
(3.4, 4 = I
(3,4.4) 2umax(l+ 3 1.1m + 5 YU ) < U(um )
-8
2 2 2 ~1
< Zum (l+-3—um +-§—~um )y .

®
In order to compute approximate solutions of (3.4.1) we use
the following standard discretization. With some given odd integer

n let

. +1. . 2,
3.4.5) £y = (-(32—~)+3)h, h==5, 3 = 0,1,...,0¢L,

v



and approximate x“(tj) by
L (x(t, ) - 2x(t.,) + =x(t. ;)
h2 j+l J j"l )

Then approximations X, of the values x(ti), i=1,..

solution of (3.4.1) at the grid points tss i=1,...

as a solution of the system

(3.4.6) —x + 2x., - X

141 i i-1 Lyeeesm, x

2 = .
= h uf(xi), is= 0

In matrix notation this becomes

(3.4.7) Fx = Mx, ) =-%

where
(3.4.8) r:R® » RD, Fx = hz(f(xl),...,f(xn))

n, . . - _— .
and A ¢ L{R") is the symmetric, positive definite matrix

IR ]

..lp' &“O

(3.4.9) A= © T
O
| —“12_‘

(see, for example, Ortega and Rheinboldt [1970]).
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.yn of the

For operators

F of the form (3.4.8) it is easily seen that F(x) = f'(x)T with

n x.
£:RY *’Rl, f{x) = h2 Z { + f(t)dt. Hence (3.4.7) can be written
i=1

in the form

, are obtained
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(3.4.10) £ )T = AAx, A

I
Rl T

Specifically, if f is defined by (3.4.2) or (3.4.3), then the

corresponding functionals £ are given by

(3.4.11) £:[0,0) x...x[0,%) =R > RY, £(x) = h°

e~
[¢]
H

i=1

and

(3.4.12) £:10,%) X...%[0,0) =& + RS,

n S
L1.2 % 3
f(x) = 2 + 5 x5 x1), 8, = 195,

respectively.
In order to obtain solutions of (3.4.10) which have a physical
meaning in comnection with (3.4.1), it is necessary to apply part (i)

of the algorithm described in Section 3.3 to the problem
{(3.4.13) min {- f(x)}—~x Ax - £, £ > 0}

when £ 1is, for example, given by (3.4.11) or (3.4.12).

We now indicate some of the computational aspects of solving

Fant
Lo
P

.10). In implementing the complete algorithm ef Section 3.3 we

have used n = 19 in (3.4.5) and an initial vector

(1..1.2,1.6,1.6,1.8,2.0,2.2,2.4,1.,...,1.5)7 ¢ &’

which is then normalized to lie in the constraint set. The choice
of € > 0 in (3.4.13) simply, determines the starting point for part

(1ii) of the algorithm and is otherwise unimportant. An error
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Lo
ite

tolerance of .1 X 10"5 was used as indicated in part (i) of the
algorithm, and several Newton steps were taken wherever this
tolerance exceeded .1 X lO~5 to improve the accuracy of the results.
Tables I through VII and Graphs I and II display the numerical
results which were obtained for (3.4.10) with £ defined by (3.4.12).
Table 1 compares the result obtained by implementing part (i) of
the algorithm first with the Goldstein procedure of Section 3.2
using a fixed parameter T and second with a minimization process
of the type deséribediin Chapter II (see Section 3.1). Tables II
and IIT relate the quantities A = %-and ”x"z for the stable and
unstable branches of solutions of (3.4.10), respectively. These
results are then depicted in Graph I. 1In Tables IV and V are listed
the data which corresponds directly to the results of Joseph [1965].

Here we have obtained values for x = x.. and the corresponding

max 10
values for ¢ and also the lower and upper bounds on | given by
(3.4.4). We note that Joseph [1965] only gives a graph of his
results and that no accurate data was available for comparison.

Our results indicate a critical value UO = 1.28411 with corresponding

X o = 2.89567. This differs somewhat from the results of Joseph
[1965] who obtained X ax = 3f08 when UO = 1.28. However, on the
unstable branch of solutions we obtained M = 1.28110 for Koy = 3.08251

ax
(see Table V). These results are shown in Graph II. Finally,

Tables VI and VII contain approximate solutions to (3.4.1) for

selected values of U. It should be noted that only Xpseeea¥® o are
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given since the symmetry of the problem implies that
X001 T F1o-1” i-= O?...,lO.

We turn now to the problem (3.4.10) with £ defined by (3.4.11).
With precisely the same organization of the tables and the graphs as
we have done for the preceding example, Tables VIII through XIV
and Graphs III and IV summarize the computational results obtained
for this problem. We note that in Tables XI and XII no lower or
upper bounds were computed for WU. Further note that on the basis
of these results, we obtain the estimate M, = .87676 with correspond-

0
ing x ~ 1.22790.
max

3.5 The Heavy Rotating String Problem

In this section we present some numerical results for an
eigenvalue problem related to a heavy rotating string with one
free endpoint. This problem was studied by Kolodner [1955], and
we first summarize his results. A heavy inelastic string of uni-
form cross—sectioh p with one fixed endpoint is allowed to rotate
with constant angular velocity W, subject only to a tension T(*)

and the force of gravity with acceleration constant g.
>

v

(=4}




o
}“;

We denocte a point on the string in R3 by (ﬁ(s,t),%(s,t),@(s,t}}T,
(s,t) & [0,1] x [0,«), where s dis the arclength measured from the
free endpoint and t 1is the time. If u(s,t) = u(s)cos yt,

v(s,t) = u(s)sin wt and wis,t) = w(s), (s,t) ¢ [0,1] x [0,0),

with some vector function (u(»),v(-),w(«))T, then the equations

of motion have the form

{(Tu®)' + pwzu = 0
(3.5.1) (Tw')' + pg =0 . 0< s <1
@)%+ @ =1

TO) = 0, u(l) = w(l) = 0.
With the variable change
) -1
y(s) = (Pg) "Tu'(s),

it is readily seen that

T(s) = pglysHl/?
we) = - [ @ H M @
A
as well as
w(s) = £1<y(c>2+c2>'l/2cdc,

and that

1 2"' 22—12
(3.5.2) -y = g l(y(s) +s57) / vy, y(0) = y"(1) = 0.
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For this differential equation, Kolodner [1955] has shown that

rhere is a critical value

0 such that for w < Wy (3.5.2) has

only the trivial solution while for all w > Wy » nontrivial solu-

tions exist. corresponds to a bifurcation point as discussed

wo,
in Chapter I.

Since (3.5.2) is of the form

2
R - o)
(.303.,3) -y" = Uf(SsY): u = _g_ 1) Y(O) = Y'(l) = 0;

we use a discretization similar to that used for (3.4.1) in order
to find approximate solutions of (3.5.2). Here, with some

integer n, we set

i

(3.5.4) t. = jh, h = 1

i o1 3 0,...,nt+1

and approximate the condition y'(1) 0 by x(tn) = x( ). Then,

t
n+l

approximations X, of the values x(ti), i=1,...,n of a solution

of (3.5.3) are obtained as solutions of the system

- +2. F . - -
-X, + in =%, 1= h pf(ti,xi), i=1,...,n~1, Xy = 0

i+l

2._.
X - X = h uf(tn,xn). -

n n-1

This is equivalent to the operator equation
\ _ 1
{3.5.5) Fx = AMx, )\ = i

where

n’ n 2 ,= -
F:R" >R, Fx = h (f(tl’xl)"f"f(tn’xn))



and A € L(Rn) is now the symmetric positive definite matrix

Therefore, as in Section 3.4, we can write (3.5.5) as

(3.5.6) £ ()T = hax, A =%—
with some functional f£:R +~R;« Specifically, for solving (3.5.2),
we have
n
(3.5.7) £:R% + RY, £(x) = n? J (xi-{—iz)l/z
i=1

and, again, in order to obtain a physically meaningful solution we

must apply part (i) of the algorithm of Section 3.3 to the problem
min {wf(x)}%-xTAx - £, £>0}.

The complete algorithm of Section 3.3 was implemented in precisely
the same manner as in Section 3.4; in particular, we used again
n =19 in (3.5.4) as well as the same initial vector and error
criteria. Tables XV, XVI and the Graph V show the numerical
results obtained for (3.5.6) with £ defined by (3.5.7). 1In

;

Table XV we again compare the results obtained by using, in part (i),
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the Goldstein procedure with fixed parameter { versus those
formed by implementing that part of the algorithm by means of
a minimization algorithm of the type described in Chapter II.
Table XVI lists the data obtained for “x"z as a function of U,
and the Graph V shows their pictorial representation. We note
that Kolodner determined the estimate ﬂo = (wg)/g = 1.446 while

our estimate is U, = 1.48284.

0



Goldstein
procedure with

f(u) =1+ u+ .l95u2

Minimization
method as in

165

Complete
algorithm of

fixed T Chapter II Section 3.3
# iterations 60 60 4 _7
errov .211 x 10 146 X 10 .768 x 10
U 1.25439 1.25440 1.25438
x, .32990 .32978 .32989
%, 66284 64261 64283
g 93417 .93387 . 93415
X, 1.19909% 1.19871 1.19908
xg 1.43291 1.43255 1.43290
Xo 1.63119 1.63080 1.63119
%, 1.78996 1.78968 1.78996
%o 1.90589 1.90563 1.90590
X 1.97647 1.97640 1.97650
b 2.00018 2,00016 2.00021



TABLE II

fu) =1+u+ .195u2

A I=1,
7789 8.2645
.7795 8.0699
. 7801 7.9242
.7807 7.8035
.7931 6.6016
7994 6.2556
8059 5.9687
.8191 5.5036
.8397 4.9666
8765 4.2995
9167 3.7900
L9607 3.3763
1.0092 3.0264
1.0629 2.7232
1.1225 2.4557
1.1893 2.2163
1.2644 1.9998
1.3498 1.8022
1.4475 1.6206
1.5604 1.4526
1.6924 1.2965
1.8490 1.1508
2.0372 1.0141

A vs. "x"2

STABLE BRANCH

A I=l,
2.2683 .8855
2.5584 7642
2.9337 . 6494
3.4380 . 5405
3.9862 .4573
4.3316 .4168
4,7424 L3772
5.2343 .3383
5.8526 .3001
6.2164 .2813
6.6285 .2626
7.0990 L2441
7.6415 .2258
8.2738 .2076
9.0201 .1896
9.9143 .1718

11.0055 L1541
14,1115 L1191
16.4301 .1019
19.6030 . 0848
24.7414 .0678
32.4002 .0510
47.9294 .0343
92.0469 .0178

166



f(u)

TABLE III

1t

]

vs. Pxl,

1+ u+ .l95u2

UNSTABLE BRANCH

167

) =1,
. 7787 9.1749
L7794 9.4194
. 7800 9.6021
. 7806 9.7584
L7836 10.3445
. 7867 10.7999
. 7893 11.1938
. 7930 11.5510
.8025 12.4968
L8431 15.6084
8725 17.5120
. 8880 18.4578
L9041 19.4088
L9207 20.3704
. 9469 21.8416
. 9652 22.8471
. 9842 23.8762
1.0639 24.9322
1.0245 26.0183
1.0459 27.1375
1.0683 28.2933

A I,
1.0916 29.4889
1.1160 30.7280
1.1414 32.0142
1.1681 33.351¢6
1.1819 34,0408
1.2561 37.7158
1.3226 40.9706
1.4162 45,5169
1.4791 48,5470
1.5478 51.8440
1.6499 56.7254
1.7358 60.8150
1.8653 66.9584
1.9759 72.1873
2.1004 78.0615
2.2417 84.7122
2.3469 89.6587
2.4625 95.0863
2.7315 107.7012
2.9753 119.1154
3.2670 132.7513
3.3773 137.9072



TABLE IV

Fw) = 1+ u+ .1950°

U ovs.,

X
max

STABLE BRANCH

lower upper
X ox U bound on ¥ bound on U
.05266 .10086 .10084 .10171
.10382 .19086 .19084 .19402
.15314 .27086 .27081 .27734
.20664 .35086 .35074 .36192
.24993 . 41086 .41066 42624
.30436 .48086 . 48049 .50228
40018 .59086 . 59007 .62411
.50103 .69086 .68945 .73762
.60658 . 78086 .77861 . 84232
.70146 .85086 .84773 . 92564
.81124 .92086‘ . 91658 1.01089
.90164 .97086 . 96555 1.07315
1.00531 1.02086 1.01430 1.13675
1.12687 1.07086 1.06276 1.20196

lower upper
X ax M bound on 1 bound on U
1.24200 1.11086 1,10127 1.25556
1.34294 1.14086 1.12994 1.29682
1.41961 1.16086 1.14893 1.32495
1.50621 1.18086 1.16779 1.35369
1.60604 1.20086 1.18649 1.38322
1.72464 1.22086 1.20497 1.41378
1.79387 1.23086 e —
1.87244 1.24086 e -
1.96394 1.25086 1.23193 1.46255
2.07390 1.26086 ——— ——
2.21912 1.27086 —— -
2.45725 1.28086 1.25653 1.52299
2.54232 1.28286 — ——
2.60450 1.28386 1.25808 1.53309

891
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f(uw) =1+ u+ .l95u2

APPROXIMATE STABLE SOLUTION FOR SELECTED VALUES OF u

U .10086 .20086 .30086 .40086 .50086 .60086 .70086
Xy .00994 .09057 .03211 04474 .05870 .07429 .09199
X, ,01885 .03908 .06111 .08529 «11209 .14213 .17632
xq .02674 +05551 .08692 .12149 .15989 .20307 .25236
X, .03360 . 06982 .10946 .15318 .20187 .25674 .31953
Xg .03941 .08198 .12865 .18022 »23778 .30278 .37732
X 04417 .09196 14443 .20262 «26744 .34089 42526
X, .04788 .09974 .15676 «21995 .28968 .37080 .46296
Xg .05053 .10532 .16560 «23247 .30737 .39231 .49012
Xg .05212 .10866 .17091 +23999 «31743 .40528 .50651
%10 .05266 .10978 .17268 «24251 .32079 .40962 «51199
u .80086 .90086 1.00086 1.10086 1.20086 1.28386
Xy <11247 .13684 .16704 .20718 .26924 .42106
x, .21602 «26340 .32234 .40097 .52306 .82344
xq .80975 .37845 46420 .57900 . 75796 1.20070
X, .39284 .48084 .59099 .73893 . 97040 1.54611
Xg 46454 .56948 .70117 . 87854 1.15697 1.85284
Xe .52417 .64342 .79337 «99581 1.31451 2.11435
X, .57116 .70182 .86639 1.08899 1.44020 2.32468
Xg .60507 . 74402 .91926 1.15662 1.53174 2.47880
X .62555 « 76955 .95128 1.19764 1.58738 2.57287
X0 .63239 .77809 .96200 1.21138 1.60604 2.60450

0LT
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TABLE VIII
fu) =
Goldstein Minimization Complete
procedure with method as in algorithm of
fixed T Chapter 11 Section 3.3
# Iterations 60 -6 ' 60 _3 -~
Error 149 x 10 .292 x 10 .237 x 10
Y .73176 .73173 .73176
Xy .30875 .30835 .30875
X, .60754 .60672 .60754
Xy .89289 .89173 .89289
%, 1.16037 1.15886 1.16037
X 1.40450 1.40282 1.40450
e 1.61882 1.61700 1.61882
Xy 1.79621 1.79452 1.79621
Xg 1.92949 1.92803 1.92949
g 2.01239 2.01145 2.01239
z = X, 2.04054 2.04017 2.04054



A Hxﬁz
1.14073 3.62723
1.14203 2.54752
1.15656 3.17457
1.17004 2,98838
1.19813 2.72561
1.22755 2.52538
1.32515 2.09081
1.43961 1.77439
1.55127 1.55813
1.68171 1.37006
1.80294 1.23472
2.0217¢ 1.05112
2.24904 .91232
2.47137 . 80888
2.66927 73514
2.90163 .66434
3.28263 57408
3.51329 . 53057
3.77881 48806

26196 42607

TABLE IX

flu) = e

A vs, ﬂxﬁz

STABLE BRANCH

A I,
4.65910 . 38585
4,88678 . 36605
5.41613 32707
6.07409 . 28887
6.46689 . 27006
6.91402 . 25142
7.42756 .23296
8.02351 21467
8.72343 .19656
9.55715 17861

10.56706 .16082
11.81562 .14320
13.39877 12573
15.47179 .10841
18.30371 .09124
22.40457 07422
28.87357 .05735
£0.59472 . 04062
68.33520 . 02402



TABLE X 174

fQu) = e
A vs.ﬂxuz

UNSTABLE BRANCH

fock foed

e

Gt

W W 0 ~N N o0 i i BB W

T
- O

I=l, A =1,

. 89880 3.67972 11.93360
.08124 4.13633 12.45985
.19430 4.,72233 13.04077
.28501 5.21485 13.46649
43401 5.82208 13.93086
. 61598 6.18200 14.18038
.86522 6.58435 14.44340
.07857 7.05418 14.72173
.30735 8.21288 15.33368
.48309 8.94775 15.67345
.68153 9.82705 16.04123
.93105 10.89800 16.44272
.59240 12.23092 16.88554
.13419 13.93534 17.38027
. 77292 16.19171 17.94219
.31024 19.31995 18.59457
.09033 23.94637 19.37563
. 92806 31.48616 20.35477
.71978 45,95592 21.68016
.29717



X ax M

01244 .02463
.10038 .18463
14353 .25463
18333 .31463
23380 .38463
26492 42463
28120 44463
31539 48463
35207 .52463
38147 . 55463
42370 .59463
45808 .62463
49527 .65463

TABLE XI .

f(u) = g

V. X
H max

STABLE BRANCH

175

*max H
»53591 .68463
.56534 . 70463
.59705 < 72463
.63152 . 74463
66944 . 76463
.71182 . 78463
. 76026 80463
.81761 .82463
.88986 .84463
.99612 .86466

1.09614 . 87463
1.11448 .87563
1.14017 . 87663



X

max H
1.22790 .87676
1.28703 .87426
1.35323 .86926
1.40176 .86426
1.46115 .85676
1.51192 .84926
1.57178 .83926
1.62588 .82926
1.72333 .80926
1.82240 .78676
1.92458 .76176
2.02159 .73676
2.22509 .68176
2.44137 .62176
2.65963 .56176
2.88601 .50176
3.08515 .45176

TABLE XII

Fu) = &%

Movs. x
UNSTABLE BRANCH

*max "
3.29799 .40176
3.48144 .36176
3.62883 .33176
3.84194 .29176
4,07954 .25176
4.27896 .22176
4,42491 .20176
4.66437 .16176
4.95370 .14176
5.17498 .12176
5.43187 .10176
5.57810 .09176
5.73978 .08176
5.93085 .07176
6.36722 .05176
7.51227 .02176

176



X
max

b
[

MMM OM X M M
W oo N Oy U WN

bl

»
ju

»
N

™

KoMK oK oM
Ut W

A
2l

NI I B e i

*10

APPROXIMATE STABLE SOLUTION FOR SELECTED VALUES OF u

.05363

.00529
.01033
.01423
.01786
. 02094
.02347
.02543
.02683
.02767
.02796

. 60463

.07807
.14961
<21413
. 27115
. 32025
.36102
.39311
41624
43021
.43488

.10463

.01033
.01960
.02780
.03493
.04098
.04593
.04979
.05255
.05421

. 05476

. 70463

.09987
.19195
. 27549
.34976
« 41402
46763
.50999
. 54061
.55914
.56534

TABLE XIIIL

f(u) = e

. 20463

.02103
.03998
. 05679
.07144
.08389
.09412
.10209
.10780
11124
.11238

. 80463

.13119
.25321
. 36486
46492
.55218
.63546
.68369
. 72599
.75166
. 76026

u

.30463

.03276
.06237
.08874
.11178
.13141
14757
.16020
.16925
217469
.17651

.87463

.18205
.35361
.51271
.65721
. 78483
.89328
. 98036
1.04413
1.08305
1.09614

.40463

. 04580
.08736
12451
.15708
.18491
.20787
.22585
.23876
. 24654
. 24913

.87663

.18845
.36633
.53155
.68186
. 81483
. 92801
1.01900
1.08571
1.12646
1.14017

177

+ 50463

.06063

L11586
16550
.20914
< 24657
27754
.30183
.31933
.32987
»33339
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TABLE XIV
fu) = e”

APPROXIMATE UNSTABLE SOLUTION FOR SELECTED VALUES OF u

u .87676 - .87176 .77176 .67176 .57176 L47176
X . 20105 .21456 .28915 .33577 .37849 .42185
2y .39137 41831 .56799 .66215 .74863 .83650
%q .56873 .60881 .83321 .97550  1.10668 1.24027
Xy, . 73060 .78329 1.08067 1.27103  1.44744 1.62773
%o . 87427 .93869 1.30539 1.54261 1.76389 1.99116
Xe .99693 1.07181 1.50164 1.78278  2.04698 2.32004
£y 1.09582 1.17946 1.55326 1.98301  2.28578 2.60092
Xg 1.16848 1.25876 1.78414 2.13443 2.46837 2.81822
Xy 1.21294 1.30736 1.85907 2.22908  2.58346 2.95652
Xoax = %10 1.22790 1.32374 1.88448 2.26131  2.62284 3.00409
U .37176 .27176 .17176 .07176 .02176
Xy .46917 .52500 .59896 . 72580 .88436
Xy . 93240 1.04541 1.19479 1.45012 1.76820
x, 1.38618 1.55808 1.78495 2,17138  2.65077
X; 1.82509 2.05785 2.36487 2.88634  3.53025
3 2.24095 2.53634 2.92651 3.58844  4.40230
o 2.62184 2.98050 3.45610 4.26458  5.25659
%, 2.95159 3.37113 3.93126 4,88968 6.06914
Xg 3.21019 3.68264 4.31886 5.41939 6.78761
X 3.37665 3.88613 4.57747 5.78712 7.31312
o = X 3.43429 3.95721 4,66901 5.92085 7.51227



179
TABLE XV

- 2 =1, 2 .2.-1/2
£(s,y) = wg (y+s) / y

Goldstein Minimization Complete
procedure with method as in algorithm of
fixed T Chapter II Section 3.3
Execution time 6.194 sec. 3.0190 sec.
# iterations 200 200
Exror .156 x 1072 .355 x 107> .738 x 107/
A 8.22367 8.20562 8.19808
Xy .38391 .38348 .38318
X, . 74676 . 74655 . 74604
X, 1.08931 1.08937 1.08859
), 1.41156 1.41168 1.41083
Xg 1.71352 1.71383 1.71278
Xe 1.99521 1.99540 1.99445
%, 2.25664 2.25689 2.25585
Xg 2,49783 2.49778 2.49700
Xq 2.71730 2.71868 2.71792
%10 2.91805 2.91899 2.91861
%1 3.09861 3.09938 3.09910
%19 3.25900 3.25925 3.25941
X1 4 3.39925 3.39926 3.39957
X1 3.51938 3.51885 3.51959
X5 3.61941 3.61862 3.61952
X6 3.69939 3.69814 3.69937
%15 3.75787 3.75785 3.75920
Xig 3.79786 3.79750 3.79903
ps 3.81791 3.81734 3.82892

[
O




TABLE XVI.

s |x],

-, 2 -1, 2
f(s,y) = w'g (y+s

u I=ll,
1.48284 .1931 x 1072
1.48384 6246 x 107t
1.48584 .12540
1.48884 .18312
1.50084 .32469
1.53084 .53836
1.58084 .78195
1.58784 .81118
1.68784 16412
1.78784 .45406
1.88784 . 71200
1.98784 .95001
2.08784 .17426
2.28784 .59458
2.48784 . 98954
2.68784 .36746
2.88784 .73316
3.08784 .08972

2)--1/2y

180

M I=1l,
3.28784 4.43921
3.48784 4.,78309
3.68784 5.12244
3.98784 5,62468
4,28784 6.12047
4.58784 6.61121
4,88784 7.09793
5.18784 7.58137
5.48784 8.06210
5.78784 8.54058
6.09894 9.01715
6.38784 9.49209
6.68784 9.96564
6.98784 10.43798
7.2878% 10.90926
7.58784 11.37962
7.88784 11.84916
8.18784 12.31798
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